UPFL: Unsupervised Personalized Federated Learning towards New Clients

被引:0
|
作者
Ye, Tiandi [1 ]
Chen, Cen [1 ]
Wang, Yinggui [2 ]
Li, Xiang [1 ]
Gao, Ming [1 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Ant Grp, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
personalized federated learning; unsupervised learning; heterogeneous federated learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized federated learning (pFL) has gained significant attention as a promising approach to address the challenge of data heterogeneity. In this paper, we address a relatively unexplored problem in federated learning. When a federated model has been trained and deployed, and an unlabeled new client joins, providing a personalized model for the new client becomes a highly challenging task. To address this challenge, we extend the adaptive risk minimization technique into the unsupervised pFL setting and propose our method, FedTTA. We further improve FedTTA with two simple yet highly effective optimization strategies: enhancing the training of the adaptation model with proxy regularization and early-stopping the adaptation through entropy. Moreover, we propose a knowledge distillation loss specifically designed for FedTTA to address the device heterogeneity. Extensive experiments on five datasets against eleven baselines demonstrate the effectiveness of our proposed FedTTA and its variants. The code is available at: https://github.com/anonymous-federated-learning/code.
引用
收藏
页码:851 / 859
页数:9
相关论文
共 50 条
  • [21] ON FEDERATED LEARNING WITH ENERGY HARVESTING CLIENTS
    Shen, Cong
    Yang, Jing
    Xu, Jie
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8657 - 8661
  • [22] Towards Unsupervised Sudden Data Drift Detection in Federated Learning with Fuzzy Clustering
    Stallmann, Morris
    Wilbik, Anna
    Weiss, Gerhard
    2024 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ-IEEE 2024, 2024,
  • [23] Personalized federated unsupervised learning for nozzle condition monitoring using vibration sensors in additive manufacturing
    Makanda, Inno Lorren Desir
    Jiang, Pingyu
    Yang, Maolin
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2025, 93
  • [24] Prototype Contrastive Learning for Personalized Federated Learning
    Deng, Siqi
    Yang, Liu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 529 - 540
  • [25] Learning Cautiously in Federated Learning with Noisy and Heterogeneous Clients
    Wu, Chenrui
    Li, Zexi
    Wang, Fangxin
    Wu, Chao
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 660 - 665
  • [26] Unsupervised Federated Learning for Unbalanced Data
    Servetnyk, Mykola
    Fung, Carrson C.
    Han, Zhu
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [27] Personalized Federated Learning with Parameter Propagation
    Wu, Jun
    Bao, Wenxuan
    Ainsworth, Elizabeth
    He, Jingrui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2594 - 2605
  • [28] Personalized Federated Contrastive Learning for Recommendation
    Wang, Shanfeng
    Zhou, Yuxi
    Fan, Xiaolong
    Li, Jianzhao
    Lei, Zexuan
    Gong, Maoguo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025,
  • [29] Personalized Federated Learning with Semisupervised Distillation
    Li, Xianxian
    Gong, Yanxia
    Liang, Yuan
    Wang, Li-e
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [30] Gradient Free Personalized Federated Learning
    Chen, Haoyu
    Zhang, Yuxin
    Zhao, Jin
    Wang, Xin
    Xu, Yuedong
    53RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2024, 2024, : 971 - 980