Enhancing fairness in AI-enabled medical systems with the attribute neutral framework

被引:0
|
作者
Hu, Lianting [1 ,2 ,3 ,4 ]
Li, Dantong [2 ,3 ,4 ]
Liu, Huazhang [3 ,4 ]
Chen, Xuanhui [3 ,4 ]
Gao, Yunfei [3 ,4 ]
Huang, Shuai [3 ,4 ]
Peng, Xiaoting [3 ,4 ]
Zhang, Xueli [4 ,5 ,6 ]
Bai, Xiaohe [7 ]
Yang, Huan [2 ,3 ,4 ]
Kong, Lingcong [3 ,4 ]
Tang, Jiajie [8 ]
Lu, Peixin [9 ]
Xiong, Chao [1 ]
Liang, Huiying [1 ,2 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Childrens Hosp, Wuhan Maternal & Child Healthcare Hosp, Tongji Med Coll,Data Ctr, Wuhan 430016, Hubei, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangzhou 510080, Guangdong, Peoples R China
[3] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Med Big Data Ctr, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Guangdong, Peoples R China
[5] Southern Med Univ, Guangdong Prov Peoples Hosp, Med Res Inst, Guangdong Acad Med Sci, Guangzhou 510080, Guangdong, Peoples R China
[6] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Eye Inst,Dept Ophthalmol, Guangzhou 510080, Guangdong, Peoples R China
[7] Univ Calif San Diego, Sch Phys Sci, San Diego, CA 92093 USA
[8] Army Med Univ, Xinqiao Hosp, Clin Med Res Ctr, Chongqing 400037, Peoples R China
[9] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-024-52930-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Questions of unfairness and inequity pose critical challenges to the successful deployment of artificial intelligence (AI) in healthcare settings. In AI models, unequal performance across protected groups may be partially attributable to the learning of spurious or otherwise undesirable correlations between sensitive attributes and disease-related information. Here, we introduce the Attribute Neutral Framework, designed to disentangle biased attributes from disease-relevant information and subsequently neutralize them to improve representation across diverse subgroups. Within the framework, we develop the Attribute Neutralizer (AttrNzr) to generate neutralized data, for which protected attributes can no longer be easily predicted by humans or by machine learning classifiers. We then utilize these data to train the disease diagnosis model (DDM). Comparative analysis with other unfairness mitigation algorithms demonstrates that AttrNzr outperforms in reducing the unfairness of the DDM while maintaining DDM's overall disease diagnosis performance. Furthermore, AttrNzr supports the simultaneous neutralization of multiple attributes and demonstrates utility even when applied solely during the training phase, without being used in the test phase. Moreover, instead of introducing additional constraints to the DDM, the AttrNzr directly addresses a root cause of unfairness, providing a model-independent solution. Our results with AttrNzr highlight the potential of data-centered and model-independent solutions for fairness challenges in AI-enabled medical systems. Unfairness in AI healthcare models arise from biased correlations between sensitive attributes and disease data. Here, the authors show that the Attribute Neutral Framework reduces these biases and enhances fairness without compromising diagnostic accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] AI-enabled droplet detection and tracking for agricultural spraying systems
    Acharya, Praneel
    Burgers, Travis
    Nguyen, Kim-Doang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
  • [32] INCORPORATING EXPLAINABILITY AND INTERPRETABILITY INTO AI-ENABLED DECISION SUPPORT SYSTEMS
    Jacobs, P.
    Espinoza, A.
    Dodier, R.
    Young, G.
    Branigan, D.
    Eom, J.
    Chen, D.
    Mosquera-Lopez, C.
    El Youssef, J.
    Pinsonault, J.
    Leitschuh, J.
    Wilson, L.
    Castle, J.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2023, 25 : A3 - A3
  • [33] Bringing Software Engineering Discipline to the Development of AI-Enabled Systems
    Staron, Miroslaw
    Abrahao, Silvia
    Lewis, Grace
    Muccini, Henry
    Honnenahalli, Chetan
    IEEE SOFTWARE, 2024, 41 (05) : 79 - 82
  • [34] Towards an Interface Description Template for Reusing AI-enabled Systems
    Shadab, Niloofar
    Salado, Alejandro
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2893 - 2900
  • [35] Regulating autonomous and AI-enabled weapon systems: the dangers of hype
    Nathan Gabriel Wood
    AI and Ethics, 2024, 4 (3): : 805 - 817
  • [36] Key Steps to Fielding Combat Credible AI-Enabled Systems
    Mccarthy, Nicola
    Cody, Tyler
    Chandrasekaran, Jaganmohan
    Lanus, Erin
    Freeman, Laura
    Alexander, Kristen
    Hobson, Sandra
    NAVAL ENGINEERS JOURNAL, 2024, 136 (1-2) : 237 - 248
  • [37] AI-enabled adaptive learning systems: A systematic mapping of the literature
    Kabudi T.
    Pappas I.
    Olsen D.H.
    Computers and Education: Artificial Intelligence, 2021, 2
  • [38] AI-enabled suicide prediction tools: ethical considerations for medical leaders
    D'Hotman, Daniel
    Loh, Erwin
    Savulescu, Julian
    BMJ LEADER, 2021, 5 (02) : 102 - 107
  • [39] AI-Enabled Condition Monitoring Framework for Indoor Mobile Cleaning Robots
    Pookkuttath, Sathian
    Veerajagadheswar, Prabakaran
    Rajesh Elara, Mohan
    MATHEMATICS, 2023, 11 (17)
  • [40] AI-Enabled Framework for Augmenting Upper Limb Rehabilitation With a Social Robot
    Beraldo, Gloria
    Bajrami, Albin
    Umbrico, Alessandro
    Cortellessa, Gabriella
    Palpacelli, Matteo Claudio
    2024 20TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS, MESA 2024, 2024,