Enhancing fairness in AI-enabled medical systems with the attribute neutral framework

被引:0
|
作者
Hu, Lianting [1 ,2 ,3 ,4 ]
Li, Dantong [2 ,3 ,4 ]
Liu, Huazhang [3 ,4 ]
Chen, Xuanhui [3 ,4 ]
Gao, Yunfei [3 ,4 ]
Huang, Shuai [3 ,4 ]
Peng, Xiaoting [3 ,4 ]
Zhang, Xueli [4 ,5 ,6 ]
Bai, Xiaohe [7 ]
Yang, Huan [2 ,3 ,4 ]
Kong, Lingcong [3 ,4 ]
Tang, Jiajie [8 ]
Lu, Peixin [9 ]
Xiong, Chao [1 ]
Liang, Huiying [1 ,2 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Childrens Hosp, Wuhan Maternal & Child Healthcare Hosp, Tongji Med Coll,Data Ctr, Wuhan 430016, Hubei, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangzhou 510080, Guangdong, Peoples R China
[3] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Med Big Data Ctr, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Guangdong, Peoples R China
[5] Southern Med Univ, Guangdong Prov Peoples Hosp, Med Res Inst, Guangdong Acad Med Sci, Guangzhou 510080, Guangdong, Peoples R China
[6] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Eye Inst,Dept Ophthalmol, Guangzhou 510080, Guangdong, Peoples R China
[7] Univ Calif San Diego, Sch Phys Sci, San Diego, CA 92093 USA
[8] Army Med Univ, Xinqiao Hosp, Clin Med Res Ctr, Chongqing 400037, Peoples R China
[9] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-024-52930-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Questions of unfairness and inequity pose critical challenges to the successful deployment of artificial intelligence (AI) in healthcare settings. In AI models, unequal performance across protected groups may be partially attributable to the learning of spurious or otherwise undesirable correlations between sensitive attributes and disease-related information. Here, we introduce the Attribute Neutral Framework, designed to disentangle biased attributes from disease-relevant information and subsequently neutralize them to improve representation across diverse subgroups. Within the framework, we develop the Attribute Neutralizer (AttrNzr) to generate neutralized data, for which protected attributes can no longer be easily predicted by humans or by machine learning classifiers. We then utilize these data to train the disease diagnosis model (DDM). Comparative analysis with other unfairness mitigation algorithms demonstrates that AttrNzr outperforms in reducing the unfairness of the DDM while maintaining DDM's overall disease diagnosis performance. Furthermore, AttrNzr supports the simultaneous neutralization of multiple attributes and demonstrates utility even when applied solely during the training phase, without being used in the test phase. Moreover, instead of introducing additional constraints to the DDM, the AttrNzr directly addresses a root cause of unfairness, providing a model-independent solution. Our results with AttrNzr highlight the potential of data-centered and model-independent solutions for fairness challenges in AI-enabled medical systems. Unfairness in AI healthcare models arise from biased correlations between sensitive attributes and disease data. Here, the authors show that the Attribute Neutral Framework reduces these biases and enhances fairness without compromising diagnostic accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Data Security Challenges in AI-Enabled Medical Device Software
    Jayaneththi, Buddhika
    McCaffery, Fergal
    Regan, Gilbert
    2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [22] Disentangling Human-AI HybridsConceptualizing the Interworking of Humans and AI-Enabled Systems
    Lukas Fabri
    Björn Häckel
    Anna Maria Oberländer
    Marius Rieg
    Alexander Stohr
    Business & Information Systems Engineering, 2023, 65 : 623 - 641
  • [23] Generative AI-Enabled Vehicular Networks: Fundamentals, Framework, and Case Study
    Zhang, Ruichen
    Xiong, Ke
    Du, Hongyang
    Niyato, Dusit
    Kang, Jiawen
    Shen, Xuemin
    Poor, H. Vincent
    IEEE NETWORK, 2024, 38 (04): : 259 - 267
  • [24] An AI-Enabled Framework for Transparency and Interpretability in Cardiovascular Disease Risk Prediction
    Kiran, Isha
    Ali, Shahzad
    Khan, Sajawal ur Rehman
    Alhussein, Musaed
    Aslam, Sheraz
    Aurangzeb, Khursheed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 5057 - 5078
  • [25] Unmasking Parkinson's Disease with Smiles: An AI-enabled Screening Framework
    Hoque, Ehsan
    Rahman, M. Saifur
    Sarker, Imran
    Noshin, Kazi
    Tithi, Sutapa Dey
    Lee, Sangwu
    Rahman, Wasifur
    Islam, Md Saiful
    Adnan, Tariq
    MOVEMENT DISORDERS, 2023, 38 : S20 - S20
  • [26] AI-Enabled Predictive Maintenance Framework for Autonomous Mobile Cleaning Robots
    Pookkuttath, Sathian
    Rajesh Elara, Mohan
    Sivanantham, Vinu
    Ramalingam, Balakrishnan
    SENSORS, 2022, 22 (01)
  • [27] AI-Enabled Innovation in the Public Sector: A Framework for Digital Governance and Resilience
    Misuraca, Gianluca
    Viscusi, Gianluigi
    ELECTRONIC GOVERNMENT (EGOV 2020), 2020, 12219 : 110 - 120
  • [28] Bias, Explainability, Transparency, and Trust for AI-Enabled Military Systems
    Pace, Teresa
    Ranesb, Bryan
    ASSURANCE AND SECURITY FOR AI-ENABLED SYSTEMS, 2024, 13054
  • [29] Teaching AI-Enabled Business Communication in Higher Education: A Practical Framework
    Riapina, Natalia
    BUSINESS AND PROFESSIONAL COMMUNICATION QUARTERLY, 2024, 87 (03) : 511 - 521
  • [30] A Framework for AI-enabled Digital Twins in Clinical Decision-making
    Baradaran, Ashkan
    Rahimi, Samira
    Khameneifar, Farbod
    Gore, Genevieve
    Issa, Amalia
    ANNALS OF FAMILY MEDICINE, 2024, 22