Enhancing fairness in AI-enabled medical systems with the attribute neutral framework

被引:0
|
作者
Hu, Lianting [1 ,2 ,3 ,4 ]
Li, Dantong [2 ,3 ,4 ]
Liu, Huazhang [3 ,4 ]
Chen, Xuanhui [3 ,4 ]
Gao, Yunfei [3 ,4 ]
Huang, Shuai [3 ,4 ]
Peng, Xiaoting [3 ,4 ]
Zhang, Xueli [4 ,5 ,6 ]
Bai, Xiaohe [7 ]
Yang, Huan [2 ,3 ,4 ]
Kong, Lingcong [3 ,4 ]
Tang, Jiajie [8 ]
Lu, Peixin [9 ]
Xiong, Chao [1 ]
Liang, Huiying [1 ,2 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Childrens Hosp, Wuhan Maternal & Child Healthcare Hosp, Tongji Med Coll,Data Ctr, Wuhan 430016, Hubei, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangzhou 510080, Guangdong, Peoples R China
[3] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Med Big Data Ctr, Guangzhou 510080, Guangdong, Peoples R China
[4] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Guangdong, Peoples R China
[5] Southern Med Univ, Guangdong Prov Peoples Hosp, Med Res Inst, Guangdong Acad Med Sci, Guangzhou 510080, Guangdong, Peoples R China
[6] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Eye Inst,Dept Ophthalmol, Guangzhou 510080, Guangdong, Peoples R China
[7] Univ Calif San Diego, Sch Phys Sci, San Diego, CA 92093 USA
[8] Army Med Univ, Xinqiao Hosp, Clin Med Res Ctr, Chongqing 400037, Peoples R China
[9] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-024-52930-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Questions of unfairness and inequity pose critical challenges to the successful deployment of artificial intelligence (AI) in healthcare settings. In AI models, unequal performance across protected groups may be partially attributable to the learning of spurious or otherwise undesirable correlations between sensitive attributes and disease-related information. Here, we introduce the Attribute Neutral Framework, designed to disentangle biased attributes from disease-relevant information and subsequently neutralize them to improve representation across diverse subgroups. Within the framework, we develop the Attribute Neutralizer (AttrNzr) to generate neutralized data, for which protected attributes can no longer be easily predicted by humans or by machine learning classifiers. We then utilize these data to train the disease diagnosis model (DDM). Comparative analysis with other unfairness mitigation algorithms demonstrates that AttrNzr outperforms in reducing the unfairness of the DDM while maintaining DDM's overall disease diagnosis performance. Furthermore, AttrNzr supports the simultaneous neutralization of multiple attributes and demonstrates utility even when applied solely during the training phase, without being used in the test phase. Moreover, instead of introducing additional constraints to the DDM, the AttrNzr directly addresses a root cause of unfairness, providing a model-independent solution. Our results with AttrNzr highlight the potential of data-centered and model-independent solutions for fairness challenges in AI-enabled medical systems. Unfairness in AI healthcare models arise from biased correlations between sensitive attributes and disease data. Here, the authors show that the Attribute Neutral Framework reduces these biases and enhances fairness without compromising diagnostic accuracy.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Systems Modeling of Trust in AI-Enabled Medical Diagnosis
    Moghadasi, Negin
    Piran, Misagh
    Valdez, Rupa S.
    Moghaddasi, Negar
    Loose, Davis C.
    Polmateer, Thomas L.
    Lambert, James H.
    18TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON 2024, 2024,
  • [2] AI-Enabled EW Systems
    不详
    MICROWAVE JOURNAL, 2024, 67 (06)
  • [3] An Ontology-Based Cybersecurity Framework for AI-Enabled Systems and Applications
    Preuveneers, Davy
    Joosen, Wouter
    FUTURE INTERNET, 2024, 16 (03)
  • [4] An AI-Enabled Framework for Smart Semiconductor Manufacturing
    Alamin, Khaled Sidahmed Sidahmed
    Appello, Davide
    Beghi, Alessandro
    Dall'Or, Nicola
    Depaoli, Fabio
    Cataldo, Santa Di
    Fummi, Franco
    Gaiardelli, Sebastiano
    Lora, Michele
    Macii, Enrico
    Mascolini, Alessio
    Pagano, Daniele
    Ponzio, Francesco
    Susto, Gian Antonio
    Vinco, Sara
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [5] An Explainable AI-Enabled Framework for the Diabetes Classification
    Cu Kim Long
    Solanki, Vijender Kumar
    Puri, Vikram
    Rincon Aponte, Gloria Jeanette
    2023 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLIED NETWORK TECHNOLOGIES, ICMLANT, 2023, : 85 - 90
  • [6] Should AI-enabled medical devices be explainable?
    Matulionyte, Rita
    Nolan, Paul
    Magrabi, Farah
    Beheshti, Amin
    INTERNATIONAL JOURNAL OF LAW AND INFORMATION TECHNOLOGY, 2022, 30 (02): : 151 - 180
  • [7] Building the AI-Enabled Medical School of the Future
    Succi, Marc D.
    Chang, Bernard S.
    Rao, Arya S.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2025,
  • [8] Teaching Software Engineering for AI-Enabled Systems
    Kastner, Christian
    Kang, Eunsuk
    2020 ACM/IEEE 42ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING EDUCATION AND TRAINING (ICSE-SEET 2020), 2020, : 45 - 48
  • [9] AI-enabled Enterprise Information Systems for Manufacturing
    Zdravkovic, Milan
    Panetto, Herve
    Weichhart, Georg
    ENTERPRISE INFORMATION SYSTEMS, 2022, 16 (04) : 668 - 720
  • [10] An AI-enabled secure framework for enhanced elder healthcare
    Bhatia, Munish
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131