Estimation of characteristic parameters of holographic volume gratings based on machine learning

被引:1
|
作者
Colomina-Martinez, Jaume [1 ]
Sirvent-Verdu, Joan Josep [1 ,2 ]
Carlos Bravo, Juan [1 ,2 ]
Perez-Bernabeu, Andres [1 ]
Alvarez, Mariela L. [1 ,2 ]
Frances, Jorge [1 ,2 ]
Neipp, Cristian [1 ,2 ]
机构
[1] Univ Alicante, IU Fis Aplicada Ciencias & Tecnol, POB 99, E-03080 San Vicente Del Raspeig, Alicante, Spain
[2] Dept Fis Ing Sistemas & Teoria Senal, POB 99, E-03080 San Vicente Del Raspeig, Alicante, Spain
关键词
holographic volume gratings; Kogelnik's Coupled Wave Theory; Convolutional Neural Networks; Feedforward Neural Networks; NEURAL-NETWORKS;
D O I
10.1117/12.3016976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Estimating the actual parameters of real holographic volume gratings from diffraction efficiency measurements is challenging. The natural formation of the grating provides different phenomena, such as shrinkage, bending of the fringes, or non-homogeneous modulation as a function of the thickness, amongst other issues. This work proposes a deep learning Convolutional Neural Networks (CNNs) and Feedforward Neural Networks (FNNs) hybrid architecture capable of predicting the grating parameters from theoretical and experimental diffraction efficiency patterns. For the training set of this regression problem, Kogelnik's Coupled Wave Theory simulated data has been employed. Our best model has been trained with an 8000-sized dataset of 80 points of diffraction efficiency patterns simulated from a range of values for the normalized grating wavelengths, index modulations, and optical depths. It achieves test losses under one per cent (mean absolute error) for predicting the normalized grating wavelengths, index modulations and optical depths.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Some polarization effects in holographic volume gratings
    López, AM
    Arroyo, MP
    Quintanilla, M
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (03): : 378 - 385
  • [22] CHARACTERIZATION OF VOLUME AND PHASE HOLOGRAPHIC GRATINGS - COMMENT
    VANRENESSE, RL
    APPLIED OPTICS, 1984, 23 (14): : 2236 - 2238
  • [23] Diffraction characteristics of local volume holographic gratings
    Yan, Aimin
    Liu, Liren
    Liu, Dean
    Luan, Zhu
    Guangxue Xuebao/Acta Optica Sinica, 2004, 24 (09): : 1203 - 1208
  • [24] STACKED VOLUME HOLOGRAPHIC GRATINGS .1. TRANSMISSION GRATINGS IN SERIES
    SHERIDAN, JT
    OPTIK, 1993, 95 (02): : 73 - 80
  • [25] STACKED VOLUME HOLOGRAPHIC GRATINGS .2. REFLECTION GRATINGS IN SERIES
    SHERIDAN, JT
    OPTIK, 1994, 96 (01): : 1 - 12
  • [26] Design for a high dense wavelength division multiplexer based on volume holographic gratings
    Chen, SF
    Wu, CS
    Sun, CC
    OPTICAL ENGINEERING, 2004, 43 (09) : 2028 - 2033
  • [27] Design and optimization of a dispersive unit based on cascaded volume phase holographic gratings
    Muslimov, Eduard R.
    Valyavin, Gennady G.
    Fabrika, Sergei N.
    Pavlycheva, Nadezhda K.
    HOLOGRAPHY: ADVANCES AND MODERN TRENDS V, 2017, 10233
  • [28] Simulation of Ultrashort Pulse Shaping Filter Based on Multilayer Volume Holographic Gratings
    Guo, Liping
    Yan, Aimin
    Fu, Shenggui
    Liu, Xiaojuan
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 6953 - +
  • [29] Multiple Sensitive Volume Based Soft Error Rate Estimation with Machine Learning
    Hirokawa, Soichi
    Harada, Ryo
    Sakuta, Kenshiro
    Watanabe, Yukinobu
    Hashimoto, Masanori
    2016 16TH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS), 2016,
  • [30] Machine Learning Optimization of Parameters for Noise Estimation
    Jeon, Yuyong
    Ra, Ilkyeun
    Park, Youngjin
    Lee, Sangmin
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1271 - 1281