Machine Learning Optimization of Parameters for Noise Estimation

被引:0
|
作者
Jeon, Yuyong [1 ]
Ra, Ilkyeun [2 ]
Park, Youngjin [3 ]
Lee, Sangmin [1 ]
机构
[1] Inha Univ, Incheon, South Korea
[2] Univ Colorado, Denver, CO 80202 USA
[3] Korea Electrotechnol Res Inst, Ansan, South Korea
基金
新加坡国家研究基金会;
关键词
Noise Estimation; Optimization; Machine Learning; Gradient Descent; SPEECH ENHANCEMENT; CLASSIFICATION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, a fast and effective method of parameter optimization for noise estimation is proposed for various types of noise. The proposed method is based on gradient descent, which is one of the optimization methods used in machine learning. The learning rate of gradient descent was set to a negative value for optimizing parameters for a speech quality improvement problem. The speech quality was evaluated using a suite of measures. After parameter optimization by gradient descent, the values were re-checked using a wider range to prevent convergence to a local minimum. To optimize the problem's five parameters, the overall number of operations using the proposed method was 99.99958% smaller than that using the conventional method. The extracted optimal values increased the speech quality by 1.1307%, 3.097%, 3.742%, and 3.861% on average for signal-to-noise ratios of 0, 5, 10, and 15 dB, respectively.
引用
收藏
页码:1271 / 1281
页数:11
相关论文
共 50 条
  • [1] Machine Learning Based Linear and Nonlinear Noise Estimation
    Caballero, F. J. Vaquero
    Ives, D. J.
    Laperle, C.
    Charlton, D.
    Zhuge, Q.
    O'Sullivan, M.
    Savory, Seb J.
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (10) : D42 - D51
  • [2] A Machine Learning Approach to Phase Reference Estimation With Noise
    Xie, Ning
    Ou-Yang, Le
    Liu, Alex X.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (04) : 2579 - 2592
  • [3] Machine learning and the automated optimization of cardiac device parameters
    Mendenhall, Stuart
    HEART RHYTHM, 2023, 20 (09) : 1325 - 1326
  • [4] Optimization of Machine Learning Parameters for Spectrum Survey Analysis
    Urban, R.
    Steinbauer, M.
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 616 - 619
  • [5] Application of Machine Learning for Optimization of HVOF Process Parameters
    Gerner, Daniel
    Azarmi, Fardad
    Mcdonnell, Martin
    Okeke, Uchechi
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2024, 33 (2-3) : 504 - 514
  • [6] Estimation of Earthquake Source Parameters Using Machine Learning Techniques
    Rajguru, Gaurav
    Bhadauria, Y. S.
    Mukhopadhyay, S.
    2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [7] A machine learning approach to AO parameters estimation on the wavefront sensor
    Rossi, Fabio
    Turchi, Alessio
    Agapito, Guido
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097
  • [8] Estimation of Microphysical Parameters of Atmospheric Pollution Using Machine Learning
    Llerena, C.
    Mueller, D.
    Adams, R.
    Davey, N.
    Sun, Y.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 579 - 588
  • [9] A Robust Estimation Method of the Wall Parameters Based on Machine Learning
    Zhou, Sheng
    Zhang, HuaMei
    Zhang, YeRong
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - CHINA (ACES), VOL 1, 2019,
  • [10] An Efficient Antenna Parameters Estimation Using Machine Learning Algorithms
    Ramasamy R.
    Bennet M.A.
    Progress In Electromagnetics Research C, 2023, 130 : 169 - 181