Machine Learning Optimization of Parameters for Noise Estimation

被引:0
|
作者
Jeon, Yuyong [1 ]
Ra, Ilkyeun [2 ]
Park, Youngjin [3 ]
Lee, Sangmin [1 ]
机构
[1] Inha Univ, Incheon, South Korea
[2] Univ Colorado, Denver, CO 80202 USA
[3] Korea Electrotechnol Res Inst, Ansan, South Korea
基金
新加坡国家研究基金会;
关键词
Noise Estimation; Optimization; Machine Learning; Gradient Descent; SPEECH ENHANCEMENT; CLASSIFICATION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, a fast and effective method of parameter optimization for noise estimation is proposed for various types of noise. The proposed method is based on gradient descent, which is one of the optimization methods used in machine learning. The learning rate of gradient descent was set to a negative value for optimizing parameters for a speech quality improvement problem. The speech quality was evaluated using a suite of measures. After parameter optimization by gradient descent, the values were re-checked using a wider range to prevent convergence to a local minimum. To optimize the problem's five parameters, the overall number of operations using the proposed method was 99.99958% smaller than that using the conventional method. The extracted optimal values increased the speech quality by 1.1307%, 3.097%, 3.742%, and 3.861% on average for signal-to-noise ratios of 0, 5, 10, and 15 dB, respectively.
引用
收藏
页码:1271 / 1281
页数:11
相关论文
共 50 条
  • [21] Estimation of characteristic parameters of holographic volume gratings based on machine learning
    Colomina-Martinez, Jaume
    Sirvent-Verdu, Joan Josep
    Carlos Bravo, Juan
    Perez-Bernabeu, Andres
    Alvarez, Mariela L.
    Frances, Jorge
    Neipp, Cristian
    PHOTOSENSITIVE MATERIALS AND THEIR APPLICATIONS III, 2024, 13015
  • [22] Estimation of optimum tuned mass damper parameters via machine learning
    Yucel, Melda
    Bekdas, Gebrail
    Nigdeli, Sinan Melih
    Sevgen, Selcuk
    JOURNAL OF BUILDING ENGINEERING, 2019, 26
  • [23] Estimation of time-variable friction parameters using machine learning
    Ishiyama, Ryo
    Fukuyama, Eiichi
    Enescu, Bogdan
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 236 (01) : 395 - 412
  • [24] Machine Learning-Based Batch Processing for Calibration of Model and Noise Parameters
    Lee, Kyuman
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [25] Bayesian Hyperparameter Optimization and Ensemble Learning for Machine Learning Models on Software Effort Estimation
    Marco, Robert
    Ahmad, Sakinah Sharifah Syed
    Ahmad, Sabrina
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 419 - 429
  • [26] Analysis of a microwave filter parameters for design optimization via machine learning
    Araujo, J. A., I
    Barboza, Amanda G.
    Llamas-Garro, Ignacio
    Cavalcanti Filho, P. H. B.
    Cavalcanti, Camila da S.
    Barbosa, D. C. P.
    de Melo, Marcos Tavares
    de Oliveira, J. M. A. M.
    2023 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, IMOC, 2023, : 100 - 102
  • [27] A machine learning-based state estimation approach for varying noise distributions
    Hilal, Waleed
    Gadsden, Stephen A.
    Yawney, John
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [28] Optimization of Fracturing Parameters with Machine-Learning and Evolutionary Algorithm Methods
    Dong, Zhenzhen
    Wu, Lei
    Wang, Linjun
    Li, Weirong
    Wang, Zhengbo
    Liu, Zhaoxia
    ENERGIES, 2022, 15 (16)
  • [29] Integrated Optimization Method of Hidden Parameters in Incremental Extreme Learning Machine
    Zhang, Siyuan
    Xie, Linbo
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [30] Efficient optimization of support vector machine learning parameters for unbalanced datasets
    Eitrich, Tatjana
    Lang, Bruno
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) : 425 - 436