"Quantum Geometric Nesting" and Solvable Model Flat-Band Systems

被引:1
|
作者
Han, Zhaoyu [1 ]
Herzog-Arbeitman, Jonah [2 ]
Bernevig, B. Andrei [2 ,3 ,4 ]
Kivelson, Steven A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Donostia Int Phys Ctr, P Manuel Lardizabal 4, Donostia San Sebastian 20018, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
来源
PHYSICAL REVIEW X | 2024年 / 14卷 / 04期
基金
欧洲研究理事会;
关键词
PHYSICS;
D O I
10.1103/PhysRevX.14.041004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the concept of "quantum geometric nesting" (QGN) to characterize the idealized ordering tendencies of certain flat-band systems implicit in the geometric structure of the flat-band subspace. Perfect QGN implies the existence of an infinite class of local interactions that can be explicitly constructed and give rise to solvable ground states with various forms of possible fermion bilinear order, including flavor ferromagnetism, density waves, and superconductivity. For the ideal Hamiltonians constructed in this way, we show that certain aspects of the low-energy spectrum can also be exactly computed including, in the superconducting case, the phase stiffness. Examples of perfect QGN include flat bands with certain symmetries (e.g., chiral or time reversal) and non-symmetry-related cases exemplified with an engineered model for pair-density wave. Extending this approach, we obtain exact superconducting ground states with nontrivial pairing symmetry.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] High conductivity from cross-band electron pairing in flat-band systems
    Trushin, Maxim
    Peng, Liangtao
    Sharma, Gargee
    Vignale, Giovanni
    Adam, Shaffique
    PHYSICAL REVIEW B, 2024, 109 (24)
  • [32] Flat-band generator in two dimensions
    Maimaiti, Wulayimu
    Andreanov, Alexei
    Flach, Sergej
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [33] Non-perturbative dynamics of flat-band systems with correlated disorder
    李骐
    刘军丰
    刘克
    胡自翔
    李舟
    Chinese Physics B, 2024, 33 (09) : 551 - 555
  • [34] Flat-Band AC Transport in Nanowires
    Sanchez, Vicenta
    Wang, Chumin
    NANOMATERIALS, 2025, 15 (01)
  • [35] Computational Design of Flat-Band Material
    Hase, I.
    Yanagisawa, T.
    Kawashima, K.
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [36] Catalogue of flat-band stoichiometric materials
    Nicolas Regnault
    Yuanfeng Xu
    Ming-Rui Li
    Da-Shuai Ma
    Milena Jovanovic
    Ali Yazdani
    Stuart S. P. Parkin
    Claudia Felser
    Leslie M. Schoop
    N. Phuan Ong
    Robert J. Cava
    Luis Elcoro
    Zhi-Da Song
    B. Andrei Bernevig
    Nature, 2022, 603 : 824 - 828
  • [37] Flat-band engineering of mobility edges
    Danieli, Carlo
    Bodyfelt, Joshua D.
    Flach, Sergej
    PHYSICAL REVIEW B, 2015, 91 (23)
  • [38] Heat percolation in many-body flat-band localizing systems
    Vakulchyk, Ihor
    Danieli, Carlo
    Andreanov, Alexei
    Flach, Sergej
    PHYSICAL REVIEW B, 2021, 104 (14)
  • [39] High-temperature surface superconductivity in topological flat-band systems
    Kopnin, N. B.
    Heikkila, T. T.
    Volovik, G. E.
    PHYSICAL REVIEW B, 2011, 83 (22):
  • [40] CHARACTERIZATION OF PHOTORESPONSES IN SEMICONDUCTOR - ELECTROLYTE SYSTEMS AND DETERMINATION OF FLAT-BAND POTENTIALS
    ROY, A
    BHATTACHARYYA, SS
    ADITYA, S
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1986, 11 (06) : 367 - 371