"Quantum Geometric Nesting" and Solvable Model Flat-Band Systems

被引:1
|
作者
Han, Zhaoyu [1 ]
Herzog-Arbeitman, Jonah [2 ]
Bernevig, B. Andrei [2 ,3 ,4 ]
Kivelson, Steven A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Donostia Int Phys Ctr, P Manuel Lardizabal 4, Donostia San Sebastian 20018, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
来源
PHYSICAL REVIEW X | 2024年 / 14卷 / 04期
基金
欧洲研究理事会;
关键词
PHYSICS;
D O I
10.1103/PhysRevX.14.041004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the concept of "quantum geometric nesting" (QGN) to characterize the idealized ordering tendencies of certain flat-band systems implicit in the geometric structure of the flat-band subspace. Perfect QGN implies the existence of an infinite class of local interactions that can be explicitly constructed and give rise to solvable ground states with various forms of possible fermion bilinear order, including flavor ferromagnetism, density waves, and superconductivity. For the ideal Hamiltonians constructed in this way, we show that certain aspects of the low-energy spectrum can also be exactly computed including, in the superconducting case, the phase stiffness. Examples of perfect QGN include flat bands with certain symmetries (e.g., chiral or time reversal) and non-symmetry-related cases exemplified with an engineered model for pair-density wave. Extending this approach, we obtain exact superconducting ground states with nontrivial pairing symmetry.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Impurities and Landau level mixing in a fractional quantum Hall state in a flat-band lattice model
    Siro, Topi
    Ervasti, Mikko
    Harju, Ari
    PHYSICAL REVIEW B, 2014, 90 (16)
  • [22] Ginzburg-Landau Theory of Flat-Band Superconductors with Quantum Metric
    Chen, Shuai A.
    Law, K. T.
    PHYSICAL REVIEW LETTERS, 2024, 132 (02)
  • [23] Tunable zero modes and quantum interferences in flat-band topological insulators
    Zurita, Juan
    Creffield, Charles
    Platero, Gloria
    QUANTUM, 2021, 5
  • [24] Chirality reversal quantum phase transition in flat-band topological insulators
    Litvinov, V., I
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (05)
  • [25] Flat-band superconductivity in a system with a tunable quantum metric: The stub lattice
    Thumin M.
    Bouzerar G.
    Physical Review B, 2023, 107 (21)
  • [26] Flat-band ratio and quantum metric in the superconductivity of modified Lieb lattices
    Penttila, Reko P. S.
    Huhtinen, Kukka-Emilia
    Torma, Paivi
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [27] An analytical model for flat-band polysilicon quantization in MOS devices
    Spinelli, AS
    Clerc, R
    Ghibaudo, G
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (07) : 1314 - 1316
  • [28] Flat-band localization in the Anderson-Falicov-Kimball model
    Souza, A. M. C.
    Herrmann, H. J.
    PHYSICAL REVIEW B, 2009, 79 (15):
  • [29] Computational Design of Flat-Band Material
    I. Hase
    T. Yanagisawa
    K. Kawashima
    Nanoscale Research Letters, 2018, 13
  • [30] Catalogue of flat-band stoichiometric materials
    Regnault, Nicolas
    Xu, Yuanfeng
    Li, Ming-Rui
    Ma, Da-Shuai
    Jovanovic, Milena
    Yazdani, Ali
    Parkin, Stuart S. P.
    Felser, Claudia
    Schoop, Leslie M.
    Ong, N. Phuan
    Cava, Robert J.
    Elcoro, Luis
    Song, Zhi-Da
    Bernevig, B. Andrei
    NATURE, 2022, 603 (7903) : 824 - +