"Quantum Geometric Nesting" and Solvable Model Flat-Band Systems

被引:1
|
作者
Han, Zhaoyu [1 ]
Herzog-Arbeitman, Jonah [2 ]
Bernevig, B. Andrei [2 ,3 ,4 ]
Kivelson, Steven A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Donostia Int Phys Ctr, P Manuel Lardizabal 4, Donostia San Sebastian 20018, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao, Spain
来源
PHYSICAL REVIEW X | 2024年 / 14卷 / 04期
基金
欧洲研究理事会;
关键词
PHYSICS;
D O I
10.1103/PhysRevX.14.041004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the concept of "quantum geometric nesting" (QGN) to characterize the idealized ordering tendencies of certain flat-band systems implicit in the geometric structure of the flat-band subspace. Perfect QGN implies the existence of an infinite class of local interactions that can be explicitly constructed and give rise to solvable ground states with various forms of possible fermion bilinear order, including flavor ferromagnetism, density waves, and superconductivity. For the ideal Hamiltonians constructed in this way, we show that certain aspects of the low-energy spectrum can also be exactly computed including, in the superconducting case, the phase stiffness. Examples of perfect QGN include flat bands with certain symmetries (e.g., chiral or time reversal) and non-symmetry-related cases exemplified with an engineered model for pair-density wave. Extending this approach, we obtain exact superconducting ground states with nontrivial pairing symmetry.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum Geometric Oscillations in Two-Dimensional Flat-Band Solids
    Phong, Vo Tien
    Mele, E. J.
    PHYSICAL REVIEW LETTERS, 2023, 130 (26)
  • [2] Superconducting transitions in flat-band systems
    Iglovikov, V. I.
    Hebert, F.
    Gremaud, B.
    Batrouni, G. G.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [3] Flat-band quantum communication induced by disorder
    Almeida, G. M. A.
    Dutra, R. F.
    Souza, A. M. C.
    Lyra, M. L.
    de Moura, F. A. B. F.
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [4] Flat-band ferromagnetism in quantum dot superlattices
    Tamura, H
    Shiraishi, K
    Kimura, T
    Takayanagi, H
    PHYSICAL REVIEW B, 2002, 65 (08) : 1 - 8
  • [5] Flat-band exciton in two-dimensional Kagome quantum wire systems
    Ishii, H
    Nakayama, T
    Inoue, J
    PHYSICAL REVIEW B, 2004, 69 (08)
  • [6] Fractional quantum spin Hall effect in flat-band checkerboard lattice model
    Li, Wei
    Sheng, D. N.
    Ting, C. S.
    Chen, Yan
    PHYSICAL REVIEW B, 2014, 90 (08):
  • [7] Pairing and non-Fermi liquid behavior in partially flat-band systems: Beyond nesting physics
    Sayyad, Sharareh
    Huang, Edwin W.
    Kitatani, Motoharu
    Vaezi, Mohammad-Sadegh
    Nussinov, Zohar
    Vaezi, Abolhassan
    Aoki, Hideo
    PHYSICAL REVIEW B, 2020, 101 (01)
  • [8] Quantum localized states in photonic flat-band lattices
    Rojas-Rojas, S.
    Morales-Inostroza, L.
    Vicencio, R. A.
    Delgado, A.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [9] Giant boost of the quantum metric in disordered one-dimensional flat-band systems
    Bouzerar, G.
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [10] Quantum electron transport in finite-size flat-band Kagome lattice systems
    Ishii, H
    Nakayama, T
    Physics of Semiconductors, Pts A and B, 2005, 772 : 1285 - 1286