Sentiment Analysis on GPT-4 with Comparative Models Using Twitter Data

被引:0
|
作者
Ozel, Mustafa [1 ]
Bozkurt, Ozlem Cetinkaya [2 ]
机构
[1] Burdur Mehmet Akif Ersoy Univ, Social Sci Inst, Burdur, Turkiye
[2] Burdur Mehmet Akif Ersoy Univ, Bucak Fac Business Adm, Dept Business Adm, Burdur, Turkiye
来源
ACTA INFOLOGICA | 2024年 / 8卷 / 01期
关键词
Sentiment analysis; social media; Twitter; X; natural language processing;
D O I
10.26650/acin.1418834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Every day, people from all over the world use Twitter to talk about many differenttopics using hashtags. Since ChatGPT was launched, researchers have been study-ing how people perceive it in society. This research aims to find out what TurkishTwitter users think about OpenAI's latest AI model called Generative Pre-trainedTransformer 4 (GPT-4). The quantitative data used in this study consist of hashtagson the topic of GPT-4 and involve 2,978 tweets on this topic that were shared onTwitter between March 14-April 9, 2023. The study uses TextBlob sentiment scoresto classify the tweets and support vector machines, logistic regression, XGBoost, andrandom forest algorithms to classify the sentiment of the dataset. The results from thelogistic regression, XGBoost, and support vector methods are in close alignment. Allparameter findings indicate dependable machine learning, emphasizing the models'success in classifying tweet sentiment
引用
收藏
页码:23 / 33
页数:11
相关论文
共 50 条
  • [41] Saudi Stock Market Sentiment Analysis using Twitter Data
    Alazba, Amal
    Alturayeif, Nora
    Alturaief, Nouf
    Alhathloul, Zainab
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KDIR), VOL 1, 2020, : 36 - 47
  • [42] Feasibility of GPT-3 and GPT-4 for in-Depth Patient Education Prior to Interventional Radiological Procedures: A Comparative Analysis
    Scheschenja, Michael
    Viniol, Simon
    Bastian, Moritz B.
    Wessendorf, Joel
    Koenig, Alexander M.
    Mahnken, Andreas H.
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2024, 47 (02) : 245 - 250
  • [43] Feasibility of GPT-3 and GPT-4 for in-Depth Patient Education Prior to Interventional Radiological Procedures: A Comparative Analysis
    Michael Scheschenja
    Simon Viniol
    Moritz B. Bastian
    Joel Wessendorf
    Alexander M. König
    Andreas H. Mahnken
    CardioVascular and Interventional Radiology, 2024, 47 : 245 - 250
  • [44] Exploiting Data of the Twitter Social Network Using Sentiment Analysis
    Gonzalez-Marron, David
    Mejia-Guzman, David
    Enciso-Gonzalez, Angelica
    APPLICATIONS FOR FUTURE INTERNET, AFI 2016, 2017, 179 : 35 - 38
  • [45] Sentiment Analysis on Twitter Data using Apache Spark Framework
    Elzayady, Hossam
    Badran, Khaled M.
    Salama, Gouda I.
    PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 171 - 176
  • [46] Election Prediction Based on Sentiment Analysis using Twitter Data
    Yavari A.
    Hassanpour H.
    Cami B.R.
    Mahdavi M.
    International Journal of Engineering, Transactions A: Basics, 2022, 35 (02): : 372 - 379
  • [47] Assessing GPT-4 multimodal performance in radiological image analysis
    Brin, Dana
    Sorin, Vera
    Barash, Yiftach
    Konen, Eli
    Glicksberg, Benjamin S.
    Nadkarni, Girish N.
    Klang, Eyal
    EUROPEAN RADIOLOGY, 2025, 35 (04) : 1959 - 1965
  • [48] ChatGPT as a Source of Information for Bariatric Surgery Patients: a Comparative Analysis of Accuracy and Comprehensiveness Between GPT-4 and GPT-3.5
    Samaan, Jamil S.
    Rajeev, Nithya
    Ng, Wee Han
    Srinivasan, Nitin
    Busam, Jonathan A.
    Yeo, Yee Hui
    Samakar, Kamran
    OBESITY SURGERY, 2024, 34 (05) : 1987 - 1989
  • [49] Evolution and Evaluation: Sarcasm Analysis for Twitter Data Using Sentiment Analysis
    Bhakuni, Monika
    Kumar, Karan
    Iwendi, Celestine
    Singh, Avtar
    JOURNAL OF SENSORS, 2022, 2022
  • [50] Action Rules for Sentiment Analysis on Twitter Data using Spark
    Ranganathan, Jaishree
    Irudayaraj, Allen S.
    Tzacheva, Angelina A.
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 51 - 60