Sentiment Analysis on GPT-4 with Comparative Models Using Twitter Data

被引:0
|
作者
Ozel, Mustafa [1 ]
Bozkurt, Ozlem Cetinkaya [2 ]
机构
[1] Burdur Mehmet Akif Ersoy Univ, Social Sci Inst, Burdur, Turkiye
[2] Burdur Mehmet Akif Ersoy Univ, Bucak Fac Business Adm, Dept Business Adm, Burdur, Turkiye
来源
ACTA INFOLOGICA | 2024年 / 8卷 / 01期
关键词
Sentiment analysis; social media; Twitter; X; natural language processing;
D O I
10.26650/acin.1418834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Every day, people from all over the world use Twitter to talk about many differenttopics using hashtags. Since ChatGPT was launched, researchers have been study-ing how people perceive it in society. This research aims to find out what TurkishTwitter users think about OpenAI's latest AI model called Generative Pre-trainedTransformer 4 (GPT-4). The quantitative data used in this study consist of hashtagson the topic of GPT-4 and involve 2,978 tweets on this topic that were shared onTwitter between March 14-April 9, 2023. The study uses TextBlob sentiment scoresto classify the tweets and support vector machines, logistic regression, XGBoost, andrandom forest algorithms to classify the sentiment of the dataset. The results from thelogistic regression, XGBoost, and support vector methods are in close alignment. Allparameter findings indicate dependable machine learning, emphasizing the models'success in classifying tweet sentiment
引用
收藏
页码:23 / 33
页数:11
相关论文
共 50 条
  • [11] Uncovering the semantics of concepts using GPT-4
    Le Mens, Gael
    Kovacs, Balazs
    Hannan, Michael T.
    Pros, Guillem
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (49)
  • [12] Assessing Generative Pretrained Transformers (GPT) in Clinical Decision-Making: Comparative Analysis of GPT-3.5 and GPT-4
    Lahat, Adi
    Sharif, Kassem
    Zoabi, Narmin
    Patt, Yonatan Shneor
    Sharif, Yousra
    Fisher, Lior
    Shani, Uria
    Arow, Mohamad
    Levin, Roni
    Klang, Eyal
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [13] GPT-4, health data, and GDPR: The challenging equation
    Hassani, R. Tahiri Joutei
    Sandali, O.
    Baudouin, C.
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2024, 47 (03):
  • [14] On the Use of GPT-4 for Creating Goal Models: An Exploratory Study
    Chen, Boqi
    Chen, Kua
    Hassani, Shabnam
    Yang, Yujing
    Amyot, Daniel
    Lessard, Lysanne
    Mussbachcr, Gunter
    Sabetzadeh, Mehrdad
    Varro, Daniel
    2023 IEEE 31ST INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS, REW, 2023, : 262 - 271
  • [15] Sentiment Analysis of Twitter Data
    Desai, Radhi D.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 114 - 117
  • [16] Sentiment Analysis of Twitter Data
    Wang, Yili
    Guo, Jiaxuan
    Yuan, Chengsheng
    Li, Baozhu
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [17] Sentiment Analysis of Twitter Data
    El Rahman, Sahar A.
    AlOtaibi, Feddah Alhumaidi
    AlShehri, Wejdan Abdullah
    2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), 2019, : 336 - 339
  • [18] Large language models and bariatric surgery patient education: a comparative readability analysis of GPT-3.5, GPT-4, Bard, and online institutional resources
    Srinivasan, Nitin
    Samaan, Jamil S.
    Rajeev, Nithya D.
    Kanu, Mmerobasi U.
    Yeo, Yee Hui
    Samakar, Kamran
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2024, 38 (05): : 2522 - 2532
  • [19] Sentiment Analysis on Automobile Brands Using Twitter Data
    Asghar, Zain
    Ali, Tahir
    Ahmad, Imran
    Tharanidharan, Sridevi
    Nazar, Shamim Kamal Abdul
    Kamal, Shahid
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, INTAP 2018, 2019, 932 : 76 - 85
  • [20] Large language models and bariatric surgery patient education: a comparative readability analysis of GPT-3.5, GPT-4, Bard, and online institutional resources
    Nitin Srinivasan
    Jamil S. Samaan
    Nithya D. Rajeev
    Mmerobasi U. Kanu
    Yee Hui Yeo
    Kamran Samakar
    Surgical Endoscopy, 2024, 38 : 2522 - 2532