Sentiment Analysis on GPT-4 with Comparative Models Using Twitter Data

被引:0
|
作者
Ozel, Mustafa [1 ]
Bozkurt, Ozlem Cetinkaya [2 ]
机构
[1] Burdur Mehmet Akif Ersoy Univ, Social Sci Inst, Burdur, Turkiye
[2] Burdur Mehmet Akif Ersoy Univ, Bucak Fac Business Adm, Dept Business Adm, Burdur, Turkiye
来源
ACTA INFOLOGICA | 2024年 / 8卷 / 01期
关键词
Sentiment analysis; social media; Twitter; X; natural language processing;
D O I
10.26650/acin.1418834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Every day, people from all over the world use Twitter to talk about many differenttopics using hashtags. Since ChatGPT was launched, researchers have been study-ing how people perceive it in society. This research aims to find out what TurkishTwitter users think about OpenAI's latest AI model called Generative Pre-trainedTransformer 4 (GPT-4). The quantitative data used in this study consist of hashtagson the topic of GPT-4 and involve 2,978 tweets on this topic that were shared onTwitter between March 14-April 9, 2023. The study uses TextBlob sentiment scoresto classify the tweets and support vector machines, logistic regression, XGBoost, andrandom forest algorithms to classify the sentiment of the dataset. The results from thelogistic regression, XGBoost, and support vector methods are in close alignment. Allparameter findings indicate dependable machine learning, emphasizing the models'success in classifying tweet sentiment
引用
收藏
页码:23 / 33
页数:11
相关论文
共 50 条
  • [1] Performing Sentiment Analysis on Twitter Data Using Deep Learning Models: A Comparative Study
    Varshney, Ashwani
    Kapoor, Yatin
    Thukral, Anjali
    Sharma, Richa
    Bedi, Punam
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 371 - 381
  • [2] Automated Financial Analysis Using GPT-4
    Noels, Sander
    Merlevede, Adriaan
    Fecheyr, Andrew
    Vanhalst, Maarten
    Meerlaen, Nick
    Viaene, Sebastien
    De Bie, Tijl
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 345 - 349
  • [3] Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach
    Shobayo, Olamilekan
    Adeyemi-Longe, Sidikat
    Popoola, Olusogo
    Ogunleye, Bayode
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (11)
  • [4] Is GPT-4 a Good Data Analyst?
    Cheng, Liying
    Li, Xingxuan
    Bing, Lidong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 9496 - 9514
  • [5] Evaluating Large Language Models for the National Premedical Exam in India: Comparative Analysis of GPT-3.5, GPT-4, and Bard
    Farhat, Faiza
    Chaudhry, Beenish Moalla
    Nadeem, Mohammad
    Sohail, Shahab Saquib
    Madsen, Dag Oivind
    JMIR MEDICAL EDUCATION, 2024, 10
  • [6] Sentiment Analysis of Twitter Data Using NLP Models: A Comprehensive Review
    Albladi, Aish
    Islam, Minarul
    Seals, Cheryl
    IEEE ACCESS, 2025, 13 : 30444 - 30468
  • [7] The potential of GPT-4 advanced data analysis for radiomics-based machine learning models
    Foltyn-Dumitru, Martha
    Rastogi, Aditya
    Cho, Jaeyoung
    Schell, Marianne
    Mahmutoglu, Mustafa Ahmed
    Kessler, Tobias
    Sahm, Felix
    Wick, Wolfgang
    Bendszus, Martin
    Brugnara, Gianluca
    Vollmuth, Philipp
    NEURO-ONCOLOGY ADVANCES, 2025, 7 (01)
  • [8] Fine-Tuning Large Language Models for Ontology Engineering: A Comparative Analysis of GPT-4 and Mistral
    Doumanas, Dimitrios
    Soularidis, Andreas
    Spiliotopoulos, Dimitris
    Vassilakis, Costas
    Kotis, Konstantinos
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [9] If in a Crowdsourced Data Annotation Pipeline, a GPT-4
    He, Zeyu
    Huang, Chieh-Yang
    Ding, Chien-Kuang Cornelia
    Rohatgi, Shaurya
    Huang, Ting-Hao 'Kenneth'
    PROCEEDINGS OF THE 2024 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYTEMS (CHI 2024), 2024,
  • [10] Using GPT-4 to Generate Failure Logic
    Clegg, Kester
    Habli, Ibrahim
    McDermid, John
    COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS, 2024, 14989 : 148 - 159