Nonparametric distributions of tensor-valued Lorentzian diffusion spectra for model-free data inversion in multidimensional diffusion MRI

被引:1
|
作者
Narvaez, Omar [1 ]
Yon, Maxime [2 ]
Jiang, Hong [2 ]
Bernin, Diana [3 ]
Forssell-Aronsson, Eva [4 ,5 ,6 ]
Sierra, Alejandra [1 ]
Topgaard, Daniel [2 ]
机构
[1] Univ Eastern Finland, AI Virtanen Inst Mol Sci, Kuopio, Finland
[2] Lund Univ, Dept Chem, Lund, Sweden
[3] Chalmers Univ Technol, Dept Chem & Chem Engn, Gothenburg, Sweden
[4] Univ Gothenburg, Dept Med Radiat Sci, Gothenburg, Sweden
[5] Sahlgrens Univ Hosp, Med Phys & Biomed Engn, Gothenburg, Sweden
[6] Univ Gothenburg, Sahlgrenska Acad, Sahlgrenska Ctr Canc Res, Gothenburg, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 161卷 / 08期
基金
芬兰科学院; 瑞典研究理事会;
关键词
TIME-DEPENDENT DIFFUSION; IN-VIVO OBSERVATION; GRADIENT SPIN-ECHO; MAGNETIC-RESONANCE; SELF-DIFFUSION; RESTRICTED DIFFUSION; NMR DIFFUSION; BIOPHYSICAL INTERPRETATION; ORIENTATION DISPERSION; TISSUE MICROSTRUCTURE;
D O I
10.1063/5.0213252
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetic resonance imaging (MRI) is the method of choice for noninvasive studies of micrometer-scale structures in biological tissues via their effects on the time- and frequency-dependent (restricted) and anisotropic self-diffusion of water. While new designs of time-dependent magnetic field gradient waveforms have enabled disambiguation between different aspects of translational motion that are convolved in traditional MRI methods relying on single pairs of field gradient pulses, data analysis for complex heterogeneous materials remains a challenge. Here, we propose and demonstrate nonparametric distributions of tensor-valued Lorentzian diffusion spectra, or "D(omega) distributions," as a general representation with sufficient flexibility to describe the MRI signal response from a wide range of model systems and biological tissues investigated with modulated gradient waveforms separating and correlating the effects of restricted and anisotropic diffusion.
引用
收藏
页数:17
相关论文
共 33 条
  • [21] THE EQUIVALENCE OF LINEAR SPHERICAL DECONVOLUTION AND MODEL-FREE LINEAR TRANSFORM METHODS FOR DIFFUSION MRI
    Haldar, Justin P.
    Leahy, Richard M.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 508 - 511
  • [22] Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials
    João P. de Almeida Martins
    Daniel Topgaard
    Scientific Reports, 8
  • [23] Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials
    Martins, Joao P. de Almeida
    Topgaard, Daniel
    SCIENTIFIC REPORTS, 2018, 8
  • [24] Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
    Grussu, Francesco
    Blumberg, Stefano B.
    Battiston, Marco
    Kakkar, Lebina S.
    Lin, Hongxiang
    Ianus, Andrada
    Schneider, Torben
    Singh, Saurabh
    Bourne, Roger
    Punwani, Shonit
    Atkinson, David
    Gandini Wheeler-Kingshott, Claudia A. M.
    Panagiotaki, Eleftheria
    Mertzanidou, Thomy
    Alexander, Daniel C.
    FRONTIERS IN PHYSICS, 2021, 9 (09):
  • [25] q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans
    Golkov, Vladimir
    Dosovitskiy, Alexey
    Sperl, Jonathan I.
    Menzel, Marion I.
    Czisch, Michael
    Saemann, Philipp
    Brox, Thomas
    Cremers, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1344 - 1351
  • [26] Connection between microstructural alterations detected by diffusion MRI and cognitive dysfunction in MS: A model-free analysis approach
    Farago, Peter
    Toth, Eszter
    Szabo, Nikoletta N.
    Kocsis, Krisztian
    Kincses, Balint
    Bozsik, Bence
    Vereb, Daniel
    Biernacki, Tamas Istvan
    Kiraly, Andras
    Sandi, Daniel
    Bencsik, Krisztina
    Klivenyi, Peter
    Vecsei, Laszlo
    Kincses, Zsigmond Tamas
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 57
  • [27] q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans
    Golkov, Vladimir
    Dosovitskiy, Alexey
    Saemann, Philipp
    Sperl, Jonathan I.
    Sprenger, Tim
    Czisch, Michael
    Menzel, Marion I.
    Gomez, Pedro A.
    Haase, Axel
    Brox, Thomas
    Cremers, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 37 - 44
  • [28] Assessing renal interstitial fibrosis using compartmental, non-compartmental, and model-free diffusion MRI approaches
    Hu, Wentao
    Dai, Yongming
    Liu, Fang
    Yang, Tianshu
    Wang, Yao
    Shen, Yiwei
    Zhou, Wenyan
    Wu, Dongmei
    Gu, Leyi
    Zhang, Minfang
    Zhou, Yan
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [29] Adding a Model-free Diffusion MRI Marker to BI-RADS Assessment Improves Specificity for Diagnosing Breast Lesions
    Goto, Mariko
    Le Bihan, Denis
    Yoshida, Mariko
    Sakai, Koji
    Yamada, Kei
    RADIOLOGY, 2019, 292 (01) : 84 - 93
  • [30] Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor
    d'Auvergne, Edward J.
    Gooley, Paul R.
    JOURNAL OF BIOMOLECULAR NMR, 2008, 40 (02) : 121 - 133