共 1 条
Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials
被引:42
|作者:
Martins, Joao P. de Almeida
[1
]
Topgaard, Daniel
[1
]
机构:
[1] Lund Univ, Dept Chem, Div Phys Chem, Lund, Sweden
来源:
SCIENTIFIC REPORTS
|
2018年
/
8卷
基金:
瑞典研究理事会;
关键词:
MAGNETIC-RESONANCE;
PGSE NMR;
CONSTRAINED OPTIMIZATION;
SELF-DIFFUSION;
MYELIN WATER;
MRI;
MICROSTRUCTURE;
BRAIN;
QUANTIFICATION;
DISTRIBUTIONS;
D O I:
10.1038/s41598-018-19826-9
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Despite their widespread use in non-invasive studies of porous materials, conventional MRI methods yield ambiguous results for microscopically heterogeneous materials such as brain tissue. While the forward link between microstructure and MRI observables is well understood, the inverse problem of separating the signal contributions from different microscopic pores is notoriously difficult. Here, we introduce an experimental protocol where heterogeneity is resolved by establishing 6D correlations between the individual values of isotropic diffusivity, diffusion anisotropy, orientation of the diffusion tensor, and relaxation rates of distinct populations. Such procedure renders the acquired signal highly specific to the sample's microstructure, and allows characterization of the underlying pore space without prior assumptions on the number and nature of distinct microscopic environments. The experimental feasibility of the suggested method is demonstrated on a sample designed to mimic the properties of nerve tissue. If matched to the constraints of whole body scanners, this protocol could allow for the unconstrained determination of the different types of tissue that compose the living human brain.
引用
收藏
页数:12
相关论文