Multistage strategy for ground point filtering on large-scale datasets

被引:0
|
作者
Paredes, Diego Teijeiro [1 ]
Lopez, Margarita Amor [1 ]
Bujan, Sandra [2 ]
Richter, Rico [3 ]
Doellner, Juergen [3 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Ingn Comp, Comp Arquitecture Grp,CITIC,Lab 1 2, Campus Elvina s-n, La Coruna 15071, Spain
[2] Univ Leon, Dept Tecnol Minera Topog & Estruct, Leon, Spain
[3] Univ Potsdam, Hasso Plattner Inst, Fac Digital Engn, Potsdam, Germany
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 18期
关键词
LiDAR point clouds; Landscape identification; Ground filtering; Apache spark; LIDAR DATA; CLASSIFICATION; CLOUD; SEGMENTATION; EXTRACTION; ALGORITHMS;
D O I
10.1007/s11227-024-06406-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Ground point filtering on national-level datasets is a challenge due to the presence of multiple types of landscapes. This limitation does not simply affect to individual users, but it is in particular relevant for those national institutions in charge of providing national-level Light Detection and Ranging (LiDAR) point clouds. Each type of landscape is typically better filtered by different filtering algorithms or parameters; therefore, in order to get the best quality classification, the LiDAR point cloud should be divided by the landscape before running the filtering algorithms. Despite the fact that the manual segmentation and identification of the landscapes can be very time intensive, only few studies have addressed this issue. In this work, we present a multistage approach to automate the identification of the type of landscape using several metrics extracted from the LiDAR point cloud, matching the best filtering algorithms in each type of landscape. An additional contribution is presented, a parallel implementation for distributed memory systems, using Apache Spark, that can achieve up to 34x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$34\times$$\end{document} of speedup using 12 compute nodes.
引用
收藏
页码:25974 / 26001
页数:28
相关论文
共 50 条
  • [41] Understanding Data Similarity in Large-Scale Scientific Datasets
    Linton, Payton
    Melodia, William
    Lazar, Alina
    Agarwal, Deborah
    Bianchi, Ludovico
    Ghoshal, Devarshi
    Pastorello, Gilbert
    Ramakrishnan, Lavanya
    Wu, Kesheng
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4525 - 4531
  • [42] MFC Datasets: Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation
    Guan, Haiying
    Kozak, Mark
    Robertson, Eric
    Lee, Yooyoung
    Yates, Amy N.
    Delgado, Andrew
    Zhou, Daniel
    Kheyrkhah, Timothee
    Smith, Jeff
    Fiscus, Jonathan
    2019 IEEE WINTER APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2019, : 63 - 72
  • [43] Large-Scale Ideal Point Estimation
    Peress, Michael
    POLITICAL ANALYSIS, 2022, 30 (03) : 346 - 363
  • [44] On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach
    Castro, Jordi
    Escudero, Laureano F.
    Monge, Juan F.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 310 (01) : 268 - 285
  • [45] Multistage Scene-Level Constraints for Large-Scale Point Cloud Weakly Supervised Semantic Segmentation
    Su, Yanfei
    Cheng, Ming
    Yuan, Zhimin
    Liu, Weiquan
    Zeng, Wankang
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] Modeling of Large-Scale Point Model
    Guo Ming
    Wang Yanmin
    Zhao Youshan
    Zhou Junzhao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 448 - +
  • [47] STRATEGY FOR LARGE-SCALE DENTAL AUTOMATION
    DIEHL, M
    DENTAL CLINICS OF NORTH AMERICA, 1986, 30 (04) : 745 - 753
  • [48] Distributed Multistage Optimization of Large-Scale Microgrids Under Stochasticity
    Pacaud, Francois
    De Lara, Michel
    Chancelier, Jean-Philippe
    Carpentier, Pierre
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (01) : 204 - 211
  • [49] The design of a novel multistage OXC for large-scale optical networks
    Hua, L
    Zeng, QJ
    Jun, H
    Liu, JM
    Chen, CF
    Xuan, XL
    APOC 2002: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; OPTICAL NETWORKING II, 2002, 4910 : 197 - 202
  • [50] Multistage Adaptive Testing Design in International Large-Scale Assessments
    Yamamoto, Kentaro
    Shin, Hyo Jeong
    Khorramdel, Lale
    EDUCATIONAL MEASUREMENT-ISSUES AND PRACTICE, 2018, 37 (04) : 16 - 27