Multistage strategy for ground point filtering on large-scale datasets

被引:0
|
作者
Paredes, Diego Teijeiro [1 ]
Lopez, Margarita Amor [1 ]
Bujan, Sandra [2 ]
Richter, Rico [3 ]
Doellner, Juergen [3 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Ingn Comp, Comp Arquitecture Grp,CITIC,Lab 1 2, Campus Elvina s-n, La Coruna 15071, Spain
[2] Univ Leon, Dept Tecnol Minera Topog & Estruct, Leon, Spain
[3] Univ Potsdam, Hasso Plattner Inst, Fac Digital Engn, Potsdam, Germany
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 18期
关键词
LiDAR point clouds; Landscape identification; Ground filtering; Apache spark; LIDAR DATA; CLASSIFICATION; CLOUD; SEGMENTATION; EXTRACTION; ALGORITHMS;
D O I
10.1007/s11227-024-06406-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Ground point filtering on national-level datasets is a challenge due to the presence of multiple types of landscapes. This limitation does not simply affect to individual users, but it is in particular relevant for those national institutions in charge of providing national-level Light Detection and Ranging (LiDAR) point clouds. Each type of landscape is typically better filtered by different filtering algorithms or parameters; therefore, in order to get the best quality classification, the LiDAR point cloud should be divided by the landscape before running the filtering algorithms. Despite the fact that the manual segmentation and identification of the landscapes can be very time intensive, only few studies have addressed this issue. In this work, we present a multistage approach to automate the identification of the type of landscape using several metrics extracted from the LiDAR point cloud, matching the best filtering algorithms in each type of landscape. An additional contribution is presented, a parallel implementation for distributed memory systems, using Apache Spark, that can achieve up to 34x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$34\times$$\end{document} of speedup using 12 compute nodes.
引用
收藏
页码:25974 / 26001
页数:28
相关论文
共 50 条
  • [21] Multistage electrodialysis for large-scale separation of racemic mixtures
    van der Ent, EM
    van Hee, P
    Keurentjes, JTF
    van't Riet, K
    van der Padt, A
    JOURNAL OF MEMBRANE SCIENCE, 2002, 204 (1-2) : 173 - 184
  • [22] Access point selection strategy for large-scale wireless local area networks
    Du, Lei
    Bai, Yong
    Chen, Lan
    2007 IEEE WIRELESS COMMUNICATIONS & NETWORKING CONFERENCE, VOLS 1-9, 2007, : 2163 - 2168
  • [23] FILTERING OF PARTITIONED LARGE-SCALE HYDROLOGICAL SYSTEMS
    WOOD, EF
    HYDROLOGICAL SCIENCES BULLETIN-BULLETIN DES SCIENCES HYDROLOGIQUES, 1981, 26 (01): : 33 - 46
  • [24] DATA SKETCHING FOR LARGE-SCALE KALMAN FILTERING
    Berberidis, Dimitris
    Giannakis, Georgios B.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6195 - 6199
  • [25] Data Sketching for Large-Scale Kalman Filtering
    Berberidis, Dimitris
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (14) : 3688 - 3701
  • [26] Large-scale Localization Datasets in Crowded Indoor Spaces
    Lee, Donghwan
    Ryu, Soohyun
    Yeon, Suyong
    Lee, Yonghan
    Kim, Deokhwa
    Han, Cheolho
    Cabon, Yohann
    Weinzaepfel, Philippe
    Guerin, Nicolas
    Csurka, Gabriela
    Humenberger, Martin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3226 - 3235
  • [27] Comprehensive comparison of large-scale tissue expression datasets
    Santos, Alberto
    Tsafou, Kalliopi
    Stolte, Christian
    Pletscher-Frankild, Sune
    O'Donoghue, Sean I.
    Jensen, Lars Juhl
    PEERJ, 2015, 3
  • [28] GUILD - A Generator for Usable Images in Large-Scale Datasets
    Roch, Peter
    Nejad, Bijan Shahbaz
    Handte, Marcus
    Marron, Pedro Jose
    ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II, 2022, 13599 : 245 - 258
  • [29] A Distributed Approach for Parsing Large-scale OWL Datasets
    Mohamed, Heba
    Fathalla, Said
    Lehmann, Jens
    Jabeen, Hajira
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KEOD), VOL 2, 2020, : 227 - 234
  • [30] Face Retrieval in Large-Scale News Video Datasets
    Thanh Duc Ngo
    Hung Thanh Vu
    Duy-Dinh Le
    Satoh, Shin'ichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (08): : 1811 - 1825