Machine and deep learning algorithms for classifying different types of dementia: A literature review

被引:2
|
作者
Noroozi, Masoud [1 ]
Gholami, Mohammadreza [2 ]
Sadeghsalehi, Hamidreza [3 ]
Behzadi, Saleh [4 ]
Habibzadeh, Adrina [5 ,6 ]
Erabi, Gisou [7 ]
Sadatmadani, Sayedeh-Fatemeh [8 ]
Diyanati, Mitra [9 ]
Rezaee, Aryan [10 ]
Dianati, Maryam [4 ]
Rasoulian, Pegah [11 ]
Rood, Yashar Khani Siyah [12 ]
Ilati, Fatemeh [13 ]
Hadavi, Seyed Morteza [14 ]
Mojeni, Fariba Arbab [15 ]
Roostaie, Minoo [16 ]
Deravi, Niloofar [17 ]
机构
[1] Univ Isfahan, Fac Engn, Dept Biomed Engn, Esfahan, Iran
[2] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran, Iran
[3] Iran Univ Med Sci, Dept Artificial Intelligence Med Sci, Tehran, Iran
[4] Rafsanjan Univ Med Sci, Student Res Comm, Rafsanjan, Iran
[5] Fasa Univ Med Sci, Student Res Comm, Fasa, Iran
[6] Fasa Univ Med Sci, USERN Off, Fasa, Iran
[7] Urmia Univ Med Sci, Student Res Comm, Orumiyeh, Iran
[8] Isfahan Univ Med Sci, Med Sch, Esfahan, Iran
[9] Univ Colorado Boulder, Paul M Rady Dept Mech Engn, Boulder, CO 80303 USA
[10] Iran Univ Med Sci, Student Res Comm, Sch Med, Tehran, Iran
[11] Univ Tehran Med Sci, Neurosci Inst, Sports Med Res Ctr, Tehran, Iran
[12] Islamic Azad Univ Bandar Abbas, Fac Engn Comp Engn, Bandar Abbas, Iran
[13] Islamic Azad Univ, Fac Med, Student Res Comm, Mashhad, Iran
[14] Khajeh Nasir Toosi Univ, Dept Phys, Tehran, Iran
[15] Mazandaran Univ Med Sci, Student Res Comm, Sch Med, Sari, Iran
[16] Islamic Azad Univ Tehran Med Branch, Sch Med, Tehran, Iran
[17] Shahid Beheshti Univ Med Sci, Sch Med, Arabi Ave,Daneshjoo Blvd, Tehran 1983963113, Iran
关键词
Alzheimer's disease; artificial intelligence; dementia; frontotemporal dementia; Lewy body; machine learning; vascular dementia; MILD COGNITIVE IMPAIRMENT; LONG NONCODING RNA; ALZHEIMERS-DISEASE; CLASSIFICATION; BIOMARKERS; DIAGNOSIS; PREDICTION; DECLINE; CNN;
D O I
10.1080/23279095.2024.2382823
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The cognitive impairment known as dementia affects millions of individuals throughout the globe. The use of machine learning (ML) and deep learning (DL) algorithms has shown great promise as a means of early identification and treatment of dementia. Dementias such as Alzheimer's Dementia, frontotemporal dementia, Lewy body dementia, and vascular dementia are all discussed in this article, along with a literature review on using ML algorithms in their diagnosis. Different ML algorithms, such as support vector machines, artificial neural networks, decision trees, and random forests, are compared and contrasted, along with their benefits and drawbacks. As discussed in this article, accurate ML models may be achieved by carefully considering feature selection and data preparation. We also discuss how ML algorithms can predict disease progression and patient responses to therapy. However, overreliance on ML and DL technologies should be avoided without further proof. It's important to note that these technologies are meant to assist in diagnosis but should not be used as the sole criteria for a final diagnosis. The research implies that ML algorithms may help increase the precision with which dementia is diagnosed, especially in its early stages. The efficacy of ML and DL algorithms in clinical contexts must be verified, and ethical issues around the use of personal data must be addressed, but this requires more study.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] DEEP LEARNING APPROACHES FOR CLASSIFYING DATA: A REVIEW
    Bikku, Thulasi
    Sree, K. P. N. V. Satya
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2020, 15 (04): : 2580 - 2594
  • [32] An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms
    Renugadevi Ammapalayam Sinnaswamy
    Natesan Palanisamy
    Kavitha Subramaniam
    Suresh Muthusamy
    Ravita Lamba
    Sreejith Sekaran
    Wireless Personal Communications, 2023, 131 : 2055 - 2080
  • [33] An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms
    Sinnaswamy, Renugadevi Ammapalayam
    Palanisamy, Natesan
    Subramaniam, Kavitha
    Muthusamy, Suresh
    Lamba, Ravita
    Sekaran, Sreejith
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 131 (03) : 2055 - 2080
  • [34] Emotion detection based on infrared thermography: A review of machine learning and deep learning algorithms
    Calderon-Uribe, Salvador
    Morales-Hernandez, Luis A.
    Guzman-Sandoval, Veronica M.
    Dominguez-Trejo, Benjamin
    Cruz-Albarran, Irving A.
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [35] Machine Learning and Deep Learning in Spinal Injury: A Narrative Review of Algorithms in Diagnosis and Prognosis
    Maki, Satoshi
    Furuya, Takeo
    Inoue, Masahiro
    Shiga, Yasuhiro
    Inage, Kazuhide
    Eguchi, Yawara
    Orita, Sumihisa
    Ohtori, Seiji
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (03)
  • [36] Classifying IoT security risks using Deep Learning algorithms
    Abbass, Wissam
    Bakraouy, Zineb
    Baina, Amine
    Bellafkih, Mostafa
    2018 6TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), 2018, : 205 - 210
  • [37] Prognosis of dementia employing machine learning and microsimulation techniques: a systematic literature review
    Dallora, Ana Luiza
    Eivazzadeh, Shahryar
    Mendes, Emilia
    Berglund, Johan
    Anderberg, Peter
    INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2016, 2016, 100 : 480 - 488
  • [38] Machine learning and deep learning for classifying the justification of brain CT referrals
    Potocnik, Jaka
    Thomas, Edel
    Lawlor, Aonghus
    Kearney, Dearbhla
    Heffernan, Eric J.
    Killeen, Ronan P.
    Foley, Shane J.
    EUROPEAN RADIOLOGY, 2024, 34 (12) : 7944 - 7952
  • [39] The use of artificial intelligence and machine learning in the care of people with dementia: A literature review
    Belam, G.
    Nilforooshan, R.
    EUROPEAN PSYCHIATRY, 2021, 64 : S429 - S429
  • [40] Numerical Estimation of Surface Soil Moisture by Machine Learning Algorithms in Different Climatic Types
    Ahmadnejad, Sadaf
    Nadi, Mehdi
    Aghelpour, Pouya
    PURE AND APPLIED GEOPHYSICS, 2024, 181 (07) : 2149 - 2175