Machine and deep learning algorithms for classifying different types of dementia: A literature review

被引:2
|
作者
Noroozi, Masoud [1 ]
Gholami, Mohammadreza [2 ]
Sadeghsalehi, Hamidreza [3 ]
Behzadi, Saleh [4 ]
Habibzadeh, Adrina [5 ,6 ]
Erabi, Gisou [7 ]
Sadatmadani, Sayedeh-Fatemeh [8 ]
Diyanati, Mitra [9 ]
Rezaee, Aryan [10 ]
Dianati, Maryam [4 ]
Rasoulian, Pegah [11 ]
Rood, Yashar Khani Siyah [12 ]
Ilati, Fatemeh [13 ]
Hadavi, Seyed Morteza [14 ]
Mojeni, Fariba Arbab [15 ]
Roostaie, Minoo [16 ]
Deravi, Niloofar [17 ]
机构
[1] Univ Isfahan, Fac Engn, Dept Biomed Engn, Esfahan, Iran
[2] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran, Iran
[3] Iran Univ Med Sci, Dept Artificial Intelligence Med Sci, Tehran, Iran
[4] Rafsanjan Univ Med Sci, Student Res Comm, Rafsanjan, Iran
[5] Fasa Univ Med Sci, Student Res Comm, Fasa, Iran
[6] Fasa Univ Med Sci, USERN Off, Fasa, Iran
[7] Urmia Univ Med Sci, Student Res Comm, Orumiyeh, Iran
[8] Isfahan Univ Med Sci, Med Sch, Esfahan, Iran
[9] Univ Colorado Boulder, Paul M Rady Dept Mech Engn, Boulder, CO 80303 USA
[10] Iran Univ Med Sci, Student Res Comm, Sch Med, Tehran, Iran
[11] Univ Tehran Med Sci, Neurosci Inst, Sports Med Res Ctr, Tehran, Iran
[12] Islamic Azad Univ Bandar Abbas, Fac Engn Comp Engn, Bandar Abbas, Iran
[13] Islamic Azad Univ, Fac Med, Student Res Comm, Mashhad, Iran
[14] Khajeh Nasir Toosi Univ, Dept Phys, Tehran, Iran
[15] Mazandaran Univ Med Sci, Student Res Comm, Sch Med, Sari, Iran
[16] Islamic Azad Univ Tehran Med Branch, Sch Med, Tehran, Iran
[17] Shahid Beheshti Univ Med Sci, Sch Med, Arabi Ave,Daneshjoo Blvd, Tehran 1983963113, Iran
关键词
Alzheimer's disease; artificial intelligence; dementia; frontotemporal dementia; Lewy body; machine learning; vascular dementia; MILD COGNITIVE IMPAIRMENT; LONG NONCODING RNA; ALZHEIMERS-DISEASE; CLASSIFICATION; BIOMARKERS; DIAGNOSIS; PREDICTION; DECLINE; CNN;
D O I
10.1080/23279095.2024.2382823
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The cognitive impairment known as dementia affects millions of individuals throughout the globe. The use of machine learning (ML) and deep learning (DL) algorithms has shown great promise as a means of early identification and treatment of dementia. Dementias such as Alzheimer's Dementia, frontotemporal dementia, Lewy body dementia, and vascular dementia are all discussed in this article, along with a literature review on using ML algorithms in their diagnosis. Different ML algorithms, such as support vector machines, artificial neural networks, decision trees, and random forests, are compared and contrasted, along with their benefits and drawbacks. As discussed in this article, accurate ML models may be achieved by carefully considering feature selection and data preparation. We also discuss how ML algorithms can predict disease progression and patient responses to therapy. However, overreliance on ML and DL technologies should be avoided without further proof. It's important to note that these technologies are meant to assist in diagnosis but should not be used as the sole criteria for a final diagnosis. The research implies that ML algorithms may help increase the precision with which dementia is diagnosed, especially in its early stages. The efficacy of ML and DL algorithms in clinical contexts must be verified, and ethical issues around the use of personal data must be addressed, but this requires more study.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Gait-Based Machine Learning for Classifying Patients with Different Types of Mild Cognitive Impairment
    Chen, Pei-Hao
    Lien, Chieh-Wen
    Wu, Wen-Chun
    Lee, Lu-Shan
    Shaw, Jin-Siang
    JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (06)
  • [22] Machine/Deep Learning for Software Engineering: A Systematic Literature Review
    Wang, Simin
    Huang, Liguo
    Gao, Amiao
    Ge, Jidong
    Zhang, Tengfei
    Feng, Haitao
    Satyarth, Ishna
    Li, Ming
    Zhang, He
    Ng, Vincent
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (03) : 1188 - 1231
  • [23] Hazard Susceptibility Mapping with Machine and Deep Learning: A Literature Review
    Viloria, Angelly de Jesus Pugliese
    Folini, Andrea
    Carrion, Daniela
    Brovelli, Maria Antonia
    REMOTE SENSING, 2024, 16 (18)
  • [24] Detection and Defense Algorithms of Different Types of DDoS Attacks Using Machine Learning
    Yusof, Mohd Azahari Mohd
    Ali, Fakariah Hani Mohd
    Darus, Mohamad Yusof
    COMPUTATIONAL SCIENCE AND TECHNOLOGY, ICCST 2017, 2018, 488 : 370 - 379
  • [25] Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms
    Pan, Xiaoyong
    Chen, Lei
    Feng, Kai-Yan
    Hu, Xiao-Hua
    Zhang, Yu-Hang
    Kong, Xiang-Yin
    Huang, Tao
    Cai, Yu-Dong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (09)
  • [26] A Systematic Literature Review on Machine Learning Algorithms for Human Status Detection
    Sardar, Suman Kalyan
    Kumar, Naveen
    Lee, Seul Chan
    IEEE ACCESS, 2022, 10 : 74366 - 74382
  • [27] A literature review of machine learning algorithms for crash injury severity prediction
    Santos, Kenny
    Dias, Joao P.
    Amado, Conceicao
    JOURNAL OF SAFETY RESEARCH, 2022, 80 : 254 - 269
  • [28] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE Access, 2022, 10 : 134557 - 134570
  • [29] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A. A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE ACCESS, 2022, 10 : 134557 - 134570
  • [30] A Systematic Literature Review of Deep Learning Algorithms for Personality Trait Recognition
    Agastya, I. Made Artha
    Handayani, Dini Oktarina Dwi
    Mantoro, Teddy
    2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING, ENGINEERING, AND DESIGN (ICCED), 2019,