Deceased-Donor Kidney Transplant Outcome Prediction Using Artificial Intelligence to Aid Decision-Making in Kidney Allocation

被引:0
|
作者
Ali, Hatem [1 ]
Mohamed, Mahmoud [2 ]
Molnar, Miklos Z. [3 ]
Fueloep, Tibor [4 ,5 ]
Burke, Bernard [6 ]
Shroff, Arun [7 ]
Shroff, Sunil [7 ]
Briggs, David [8 ,9 ]
Krishnan, Nithya [1 ,6 ]
机构
[1] Univ Hosp Coventry & Warwickshire, Coventry, England
[2] Univ Hosp Mississippi, Jackson, MS USA
[3] Univ Utah, Spencer Fox Eccles Sch Med, Dept Internal Med, Div Nephrol & Hypertens, Salt Lake City, UT USA
[4] Med Univ South Carolina, Div Nephrol, Dept Med, Charleston, SC USA
[5] Ralph H Johnson VA Med Ctr, Med Serv, Charleston, SC USA
[6] Coventry Univ, Res Ctr Hlth & Life Sci, Coventry, England
[7] MOHAN Fdn, Xtend AI, Medindia net, Gurugram, India
[8] NHS Blood & Transplant, Histocompatibil & Immunogenet, Birmingham, England
[9] Univ Birmingham, Inst Immunol & Immunotherapy, Birmingham, England
关键词
kidney allocation schemes; artificial intelligence; SURVIVAL; DISPARITIES; IMPACT; COST;
D O I
10.1097/MAT.0000000000002190
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In kidney transplantation, pairing recipients with the highest longevity with low-risk allografts to optimize graft-donor survival is a complex challenge. Current risk prediction models exhibit limited discriminative and calibration capabilities and have not been compared to modern decision-assisting tools. We aimed to develop a highly accurate risk-stratification index using artificial intelligence (AI) techniques. Using data from the UNOS database (156,749 deceased kidney transplants, 2007-2021), we randomly divided transplants into training (80%) and validation (20%) sets. The primary measure was death-censored graft survival. Four machine learning models were assessed for calibration (integrated Brier score [IBS]) and discrimination (time-dependent concordance [CTD] index), compared with existing models. We conducted decision curve analysis and external validation using UK Transplant data. The Deep Cox mixture model showed the best discriminative performance (area under the curve [AUC] = 0.66, 0.67, and 0.68 at 6, 9, and 12 years post-transplant), with CTD at 0.66. Calibration was adequate (IBS = 0.12), while the kidney donor profile index (KDPI) model had lower CTD (0.59) and AUC (0.60). AI-based D-TOP outperformed the KDPI in evaluating transplant pairs based on graft survival, potentially enhancing deceased donor selection. Advanced computing is poised to influence kidney allocation schemes.
引用
收藏
页码:808 / 818
页数:11
相关论文
共 50 条
  • [41] PREDICTION OF KIDNEY TRANSPLANT OUTCOME BY DONOR QUALITY SCORING SYSTEMS: EXPANDED CRITERIA DONOR AND DECEASED DONOR SCORE
    Rodrigo, Emilio
    Minambres, Eduardo
    Ruiz, Juan C.
    Vallejo, Ana
    Pinera, Celestino
    Llorca, Javier
    Palomar, Rosa
    Gonzalez-Cotorruelo, Julio
    Arias, Manuel
    TRANSPLANT INTERNATIONAL, 2009, 22 : 178 - 179
  • [42] Prediction of Kidney Transplant Outcome by Donor Quality Scoring Systems: Expanded Criteria Donor and Deceased Donor Score
    Arnau, A.
    Rodrigo, E.
    Minambres, E.
    Ruiz, J. C.
    Ballesteros, M. A.
    Pinera, C.
    Fernandez-Fresnedo, G.
    Palomar, R.
    Arias, M.
    TRANSPLANTATION PROCEEDINGS, 2012, 44 (09) : 2555 - 2557
  • [43] Consequences of Deceased-Donor Kidney Allocation Systems Incorporating Matching of Recipient and Graft Lifespan
    Andreoni, Kenneth
    McCullough, K. P.
    Wolfe, R. A.
    Leichtman, A. B.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2010, 10 : 371 - 371
  • [44] A Prediction Tool to Assess the Probability of Deceased Donor Kidney Transplant
    Hernandez, R.
    Malek, S.
    Milford, E.
    Tullius, S.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2014, 14 : 592 - 592
  • [45] A Prediction Tool to Assess the Probability of Deceased Donor Kidney Transplant
    Hernandez, R.
    Malek, S.
    Milford, E.
    Tullius, S.
    TRANSPLANTATION, 2014, 98 : 592 - 592
  • [46] Associations Between Deceased-Donor Urine Biomarkers of Kidney Injury and 6-Month Kidney Transplant Function
    Parikh, C.
    Hall, I.
    Doshi, M.
    Schroppel, B.
    Weng, F.
    Hasz, R.
    Murray, P.
    Rao, V.
    Thiessen-Philbrook, H.
    Ficek, J.
    Reese, P.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2015, 15
  • [47] Back-bench split of a deceased-donor horseshoe kidney for two transplant recipients
    Guarrera, James V.
    Arrington, Ben
    Birkhoff, John D.
    Goldstein, Michael J.
    Ratner, Lloyd E.
    Kelly, Joan A.
    Radhakrishnan, Jai
    Hardy, Mark A.
    KIDNEY INTERNATIONAL, 2009, 76 (09) : 1012 - 1012
  • [48] Deceased-Donor Kidney Transplant Following Ethylene Glycol-Induced Brain Death
    Sifontis, Nicole
    Kim, Richard
    Birkenbach, Mark
    Lee, Iris
    Constantinescu, Serban
    Karachristos, Andreas
    Silva, Patricio
    Daller, John
    DIALYSIS & TRANSPLANTATION, 2011, 40 (03) : 126 - 128
  • [49] Early Steroid Withdrawal in Deceased-Donor Kidney Transplant Recipients with Delayed Graft Function
    Bae, Sunjae
    Wang, Jacqueline M. Garonzik
    Massie, Allan B.
    Jackson, Kyle R.
    McAdams-DeMarco, Mara A.
    Brennan, Daniel C.
    Lentine, Krista L.
    Coresh, Josef
    Segev, Dorry L.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 31 (01): : 175 - 185
  • [50] Associations Between Deceased-Donor Urine MCP-1 and Kidney Transplant Outcomes
    Mansour, S. G.
    Puthumana, J.
    Reese, P. P.
    Hall, I. E.
    Doshi, M. D.
    Weng, F. L.
    Schroeppel, B.
    Thiessen-Philbrook, H.
    Bimali, M.
    Parikh, C. R.
    KIDNEY INTERNATIONAL REPORTS, 2017, 2 (04): : 749 - 758