Connected Feedback Vertex Set on AT-Free Graphs

被引:0
|
作者
Mukherjee, Joydeep [1 ]
Saha, Tamojit [1 ,2 ]
机构
[1] Ramakrishna Mission Vivekananda Educ & Res Inst, Howrah, India
[2] TCG CREST, Inst Adv Intelligence, Kolkata, India
来源
关键词
Graph Algorithm; Approximation Algorithm; AT-free graph; Feedback Vertex Set; Combinatorial Optimization; ALGORITHM;
D O I
10.1007/978-3-031-34347-6_27
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A connected feedback vertex set of a graph is a connected subgraph of the graph whose removal makes the graph cycle free. In this paper, we give an approximation algorithm that computes a connected feedback vertex set of size (1.9091OPT + 6) on 2-connected AT-free graphs with running time O(n(8)m(2)). Also, we give another approximation algorithm that computes a connected feedback vertex set of size (2.9091OPT + 6) on the same graph class with more efficient running time O(min{m(log(n)), n(2)}).
引用
收藏
页码:319 / 330
页数:12
相关论文
共 50 条
  • [21] Feedback vertex set reconfiguration in planar graphs
    Bousquet, Nicolas
    Hommelsheim, Felix
    Kobayashi, Yusuke
    Muehlenthaler, Moritz
    Suzuki, Akira
    THEORETICAL COMPUTER SCIENCE, 2023, 979
  • [22] BANDWIDTH on AT-Free Graphs
    Golovach, Petr
    Heggernes, Pinar
    Kratsch, Dieter
    Lokshtanov, Daniel
    Meister, Daniel
    Saurabh, Saket
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 573 - +
  • [23] ON THE FEEDBACK VERTEX SET PROBLEM IN PERMUTATION GRAPHS
    LIANG, YD
    INFORMATION PROCESSING LETTERS, 1994, 52 (03) : 123 - 129
  • [24] Feedback Vertex Set on Graphs of Low Cliquewidth
    Bui-Xuan, Binh-Minh
    Telle, Jan Arne
    Vatshelle, Martin
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 113 - 124
  • [25] Local search is a PTAS for feedback vertex set in minor-free graphs
    Le, Hung
    Zheng, Baigong
    THEORETICAL COMPUTER SCIENCE, 2020, 838 : 17 - 24
  • [26] A feedback vertex set of 2-degenerate graphs
    Borowiecki, Mieczyslaw
    Drgas-Burchardt, Ewa
    Sidorowicz, Elzbieta
    THEORETICAL COMPUTER SCIENCE, 2014, 557 : 50 - 58
  • [27] Solving the feedback vertex set problem on undirected graphs
    Brunetta, L
    Maffioli, F
    Trubian, M
    DISCRETE APPLIED MATHEMATICS, 2000, 101 (1-3) : 37 - 51
  • [28] Subset Feedback Vertex Set in Chordal and Split Graphs
    Philip, Geevarghese
    Rajan, Varun
    Saurabh, Saket
    Tale, Prafullkumar
    ALGORITHMICA, 2019, 81 (09) : 3586 - 3629
  • [29] The minimum feedback vertex set for kronecker product of graphs
    Tigrine, Fouad
    Kheddouci, Hamamache
    UTILITAS MATHEMATICA, 2007, 74 : 207 - 237
  • [30] Isomorphism for Graphs of Bounded Feedback Vertex Set Number
    Kratsch, Stefan
    Schweitzer, Pascal
    ALGORITHM THEORY - SWAT 2010, PROCEEDINGS, 2010, 6139 : 81 - 92