A feedback vertex set of 2-degenerate graphs

被引:3
|
作者
Borowiecki, Mieczyslaw [1 ]
Drgas-Burchardt, Ewa [1 ]
Sidorowicz, Elzbieta [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Cora, Poland
关键词
Feedback vertex set; Decycling set; 2-Degenerate graphs; INDUCED FORESTS; CUBIC GRAPH;
D O I
10.1016/j.tcs.2014.08.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A feedback vertex set of a graph G is a set S of its vertices such that the subgraph induced by V(G) \ S is a forest. The cardinality of a minimum feedback vertex set of G is denoted by del(G). A graph G is 2-degenerate if each subgraph G' of G has a vertex v such that d(G')(v) <= 2. In this paper, we prove that del(G) <= 2n/5 for any 2-degenerate n-vertex graph G and moreover, we show that this bound is tight. As a consequence, we derive a polynomial time algorithm, which for a given 2-degenerate n-vertex graph returns its feedback vertex set of cardinality at most 2n/5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 50 条
  • [1] Adjacent vertex distinguishing total colorings of 2-degenerate graphs
    Miao, Zhengke
    Shi, Rui
    Hu, Xiaolan
    Luo, Rong
    DISCRETE MATHEMATICS, 2016, 339 (10) : 2446 - 2449
  • [2] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Yi Wang
    Jian Cheng
    Rong Luo
    Gregory Mulley
    Journal of Combinatorial Optimization, 2016, 31 : 874 - 880
  • [3] Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs
    Wang, Yi
    Cheng, Jian
    Luo, Rong
    Mulley, Gregory
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 874 - 880
  • [4] ON THE GEOMETRIC THICKNESS OF 2-DEGENERATE GRAPHS
    Jain, Rahul
    Ricci, Marco
    Rollin, Jonathan
    Schulz, Andre
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2024, 15 (02) : 94 - 123
  • [5] On fully orientability of 2-degenerate graphs
    Lai, Hsin-Hao
    Chang, Gerard J.
    Lih, Ko-Wei
    INFORMATION PROCESSING LETTERS, 2008, 105 (05) : 177 - 181
  • [6] Strong Chromatic Index of 2-Degenerate Graphs
    Chang, Gerard Jennhwa
    Narayanan, N.
    JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 119 - 126
  • [7] Acyclic edge coloring of 2-degenerate graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    JOURNAL OF GRAPH THEORY, 2012, 69 (01) : 1 - 27
  • [8] List total arboricity of 2-degenerate graphs
    Hetherington, Timothy J.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2018 - 2022
  • [9] Feedback Vertex Set in Mixed Graphs
    Bonsma, Paul
    Lokshtanov, Daniel
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 122 - +
  • [10] FEEDBACK VERTEX SET ON PLANAR GRAPHS
    Chen, Hong-Bin
    Fu, Hung-Lin
    Shih, Chie-Huai
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2077 - 2082