Exploring the molecular mechanism of Suoquan pill in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, in vitro experiment

被引:0
|
作者
Yan, Zi-Jie [1 ]
Kang, Yu [2 ]
Liu, Shu-Man [1 ]
Wang, Fang-Yu [3 ]
Xiao, Man [4 ]
Xie, Yi-Qiang [1 ]
机构
[1] Hainan Med Univ, Coll Tradit Chinese Med, 4 Xue Yuan Rd, Haikou 571199, Peoples R China
[2] Heilongjiang Acad Tradit Chinese Med, Grad Sch, Harbin 150001, Peoples R China
[3] Hainan Med Univ, Coll Pharm, Dept Pharmacol, Haikou 571199, Peoples R China
[4] Hainan Med Univ, Key Lab Biochem & Mol Biol, 4 Xue Yuan Rd, Haikou 571199, Peoples R China
来源
TRADITIONAL MEDICINE RESEARCH | 2024年 / 9卷 / 11期
基金
中国国家自然科学基金;
关键词
traditional Chinese medicine; diabetic kidney disease; Suoquan pill; network analysis; molecular docking; PLATELET-ACTIVATING-FACTOR; MESANGIAL CELLS; NEPHROPATHY; SRC; INHIBITION; PROGRESSION; PATHWAY; FAMILY; SLOWS;
D O I
10.53388/TMR20240105002
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Background: Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure. Suoquan pills (SQP) has a variety of pharmacological activities and multiple therapeutic effects, and it is used clinically as a basic formula for the treatment of DKD. Methods: Public databases were used to identify SQP compounds and the potential targets of SQP and DKD. A drug-component-therapeutic target network was constructed. Protein-protein interaction network analysis, Gene Ontology functional analysis, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyse the potential molecular mechanisms of SQP based on common targets of drugs and diseases. Molecular docking simulations were conducted to confirm the binding abity of the core compounds to key targets. The efficacy and predicted molecular mechanisms of SQP were validated using cell counting kit-8 assay, flow cytometry, and western blotting with HK-2 cells as a model. Results: Network pharmacology analysis showed that 26 compounds and 207 potential targets of SQP were involved in the treatment of DKD; boldine, denudatin B, pinocembrin, kaempferoid, and quercetin were considered core compounds, and epidermal growth factor receptor (EGFR) and proto-oncogene, non-receptor tyrosine kinase (SRC) were considered key targets. Gene Ontology enrichment analysis indicated that protein phosphorylation and negative regulation of apoptotic processes are important biological processes in the treatment of DKD by SQP. Molecular docking confirmed the excellent binding abilities of boldine, denudatin B, kaempferide, and quercetin to EGFR and SRC. The results of in vitro experiments showed that treatment with an ethanolic extract of SQP significantly protected HK-2 cells from high glucose-induced cell damage. In addition, the SQP ethanol extract inhibited the phosphorylation of EGFR and SRC, suppressed the apoptosis rate, and regulated apoptosis-related proteins in HK-2 cells under high glucose stress. Conclusion: This study systematically and intuitively illustrated the possible pharmacological mechanisms of SQP against DKD through multiple components, targets, and signalling pathways, especially the inhibition of EGFR and SRC phosphorylation and apoptosis.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Exploring the therapeutic mechanism of Huayu Pill on breast cancer patients based on network pharmacology theory and molecular docking technology
    Liu, Jinwen
    EUROPEAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY, 2023, 44 (02) : 136 - 136
  • [42] Exploring the mechanism of anti-fatigue of resveratrol based on network pharmacology and molecular docking, and in vitro studies
    Ma, Peipei
    Li, Jinlei
    Huang, Qing
    Wei, Shijie
    Ge, Hurong
    Wang, Zhizhong
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] Exploring the mechanism of anti-fatigue of resveratrol based on network pharmacology and molecular docking, and in vitro studies
    Peipei Ma
    Jinlei Li
    Qing Huang
    Shijie Wei
    Hurong Ge
    Zhizhong Wang
    Scientific Reports, 13
  • [44] Mechanism of Danhong Injection in the Treatment of Arrhythmia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments
    Yu, Tingting
    Li, Yuxin
    Yan, Meihui
    Zhang, Zhang
    Yuan, Xin
    Li, Sen
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [45] Molecular mechanism of vitiligo treatment by bailing tablet based on network pharmacology and molecular docking
    Li, Jinming
    Yang, Meng
    Song, Yeqiang
    MEDICINE, 2022, 101 (26) : E29661
  • [46] Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology
    Shen, Li
    Lu, Jinmiao
    Wang, Guangfei
    Wang, Cheng
    Li, Zhiping
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [47] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Yankai Dong
    Bo Tao
    Xing Xue
    Caixia Feng
    Yating Ren
    Hengyu Ma
    Junli Zhang
    Yufang Si
    Sisi Zhang
    Si Liu
    Hui Li
    Jiahao Zhou
    Ge Li
    Zhifei Wang
    Juanping Xie
    Zhongliang Zhu
    BMC Complementary Medicine and Therapies, 21
  • [48] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Dong, Yankai
    Tao, Bo
    Xue, Xing
    Feng, Caixia
    Ren, Yating
    Ma, Hengyu
    Zhang, Junli
    Si, Yufang
    Zhang, Sisi
    Liu, Si
    Li, Hui
    Zhou, Jiahao
    Li, Ge
    Wang, Zhifei
    Xie, Juanping
    Zhu, Zhongliang
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2021, 21 (01)
  • [49] Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking
    Xie, Chenchen
    Tang, Hao
    Liu, Gang
    Li, Changqing
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [50] Exploring the Molecular Mechanism of Liuwei Dihuang Pills for Treating Diabetic Nephropathy by Combined Network Pharmacology and Molecular Docking
    Wang, Gaoxiang
    Zeng, Lin
    Huang, Qian
    Lu, Zhaoqi
    Sui, Ruiqing
    Liu, Deliang
    Zeng, Hua
    Liu, Xuemei
    Chu, Shufang
    Kou, Xinhui
    Li, Huilin
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021