Exploring the molecular mechanism of Suoquan pill in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, in vitro experiment

被引:0
|
作者
Yan, Zi-Jie [1 ]
Kang, Yu [2 ]
Liu, Shu-Man [1 ]
Wang, Fang-Yu [3 ]
Xiao, Man [4 ]
Xie, Yi-Qiang [1 ]
机构
[1] Hainan Med Univ, Coll Tradit Chinese Med, 4 Xue Yuan Rd, Haikou 571199, Peoples R China
[2] Heilongjiang Acad Tradit Chinese Med, Grad Sch, Harbin 150001, Peoples R China
[3] Hainan Med Univ, Coll Pharm, Dept Pharmacol, Haikou 571199, Peoples R China
[4] Hainan Med Univ, Key Lab Biochem & Mol Biol, 4 Xue Yuan Rd, Haikou 571199, Peoples R China
来源
TRADITIONAL MEDICINE RESEARCH | 2024年 / 9卷 / 11期
基金
中国国家自然科学基金;
关键词
traditional Chinese medicine; diabetic kidney disease; Suoquan pill; network analysis; molecular docking; PLATELET-ACTIVATING-FACTOR; MESANGIAL CELLS; NEPHROPATHY; SRC; INHIBITION; PROGRESSION; PATHWAY; FAMILY; SLOWS;
D O I
10.53388/TMR20240105002
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Background: Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure. Suoquan pills (SQP) has a variety of pharmacological activities and multiple therapeutic effects, and it is used clinically as a basic formula for the treatment of DKD. Methods: Public databases were used to identify SQP compounds and the potential targets of SQP and DKD. A drug-component-therapeutic target network was constructed. Protein-protein interaction network analysis, Gene Ontology functional analysis, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyse the potential molecular mechanisms of SQP based on common targets of drugs and diseases. Molecular docking simulations were conducted to confirm the binding abity of the core compounds to key targets. The efficacy and predicted molecular mechanisms of SQP were validated using cell counting kit-8 assay, flow cytometry, and western blotting with HK-2 cells as a model. Results: Network pharmacology analysis showed that 26 compounds and 207 potential targets of SQP were involved in the treatment of DKD; boldine, denudatin B, pinocembrin, kaempferoid, and quercetin were considered core compounds, and epidermal growth factor receptor (EGFR) and proto-oncogene, non-receptor tyrosine kinase (SRC) were considered key targets. Gene Ontology enrichment analysis indicated that protein phosphorylation and negative regulation of apoptotic processes are important biological processes in the treatment of DKD by SQP. Molecular docking confirmed the excellent binding abilities of boldine, denudatin B, kaempferide, and quercetin to EGFR and SRC. The results of in vitro experiments showed that treatment with an ethanolic extract of SQP significantly protected HK-2 cells from high glucose-induced cell damage. In addition, the SQP ethanol extract inhibited the phosphorylation of EGFR and SRC, suppressed the apoptosis rate, and regulated apoptosis-related proteins in HK-2 cells under high glucose stress. Conclusion: This study systematically and intuitively illustrated the possible pharmacological mechanisms of SQP against DKD through multiple components, targets, and signalling pathways, especially the inhibition of EGFR and SRC phosphorylation and apoptosis.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Exploring Mechanism of Pelargonidin in Treatment of Pediatric Pneumonia Based on Network Pharmacology Combined with Molecular Docking
    Wu, Yanli
    Ling, Yinfei
    Hong, Huijuan
    Chen, Yun
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024, 20 (07)
  • [32] Exploring the Mechanism of Bufei Decoction in the Treatment of Bronchial Asthma Based on Network Pharmacology and Molecular Docking
    Han, Yong-Guang
    Lv, Xing
    Tan, Ya-Lan
    Ding, Yun-Shan
    Zhang, Chao-Yun
    Bian, Hua
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024,
  • [33] Exploring the mechanism of Xiaoqinglong decoction in the treatment of infantile asthma based on network pharmacology and molecular docking
    Chen, Daman
    Chen, Qiqi
    Zhao, Kaibo
    Guo, Yongqi
    Huang, Yuxin
    Yuan, Zehuan
    Cai, Yujia
    Li, Sitong
    Xu, Jiarong
    Lin, Xiaohong
    MEDICINE, 2023, 102 (02) : E32623
  • [34] Exploring the mechanism of action of Phyllanthus emblica in the treatment of epilepsy based on network pharmacology and molecular docking
    Xiao, Longfei
    Chen, Wenjun
    Guo, Wenlong
    Li, Hailin
    Chen, Rong
    Chen, Qinghua
    MEDICINE, 2025, 104 (07)
  • [35] The Mechanism of Plantaginis Semen in the Treatment of Diabetic Nephropathy based on Network Pharmacology and Molecular Docking Technology
    He, Linlin
    Shen, Kai
    He, Lei
    Chen, Yuqing
    Tang, Zhiyuan
    ENDOCRINE METABOLIC & IMMUNE DISORDERS-DRUG TARGETS, 2024, 24 (03) : 363 - 379
  • [36] Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study
    Wang, Zhigang
    Fang, Longzhi
    Han, Meng
    Liu, Kangzhe
    Zheng, Yuanmei
    Zhan, Yibei
    MEDICINE, 2024, 103 (51)
  • [37] Exploring the pharmacological mechanisms of Tripterygium wilfordii against diabetic kidney disease using network pharmacology and molecular docking
    Lu, Meiqi
    Ou, Juanjuan
    Deng, Xiaoqi
    Chen, Yixuan
    Gao, Qing
    HELIYON, 2023, 9 (06)
  • [38] Mechanism of Dayuanyin in the treatment of coronavirus disease 2019 based on network pharmacology and molecular docking
    Xiaofeng Ruan
    Peng Du
    Kang Zhao
    Jucun Huang
    Hongmei Xia
    Dan Dai
    Shu Huang
    Xiang Cui
    Liming Liu
    Jianjun Zhang
    Chinese Medicine, 15
  • [39] Mechanism of Dayuanyin in the treatment of coronavirus disease 2019 based on network pharmacology and molecular docking
    Ruan, Xiaofeng
    Du, Peng
    Zhao, Kang
    Huang, Jucun
    Xia, Hongmei
    Dai, Dan
    Huang, Shu
    Cui, Xiang
    Liu, Liming
    Zhang, Jianjun
    CHINESE MEDICINE, 2020, 15 (01) : 1V
  • [40] Exploring the mechanism of tenghuang jiangu wan in osteoporosis treatment based on network pharmacology, molecular docking and experimental pharmacology
    Zhang, Wenjing
    Sun, Mingyang
    Lv, Guangfu
    Guo, Wentao
    Hu, Jiannan
    Gu, Jingye
    Wang, Yuchen
    Gong, Qing
    Pi, Zifeng
    Lin, Zhe
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (01)