Applications of an energy-dispersive pnCCD for X-ray reflectivity: Investigation of interdiffusion in Fe-Pt multilayers

被引:8
|
作者
Abboud, Ali [1 ]
Send, Sebastian [1 ]
Hartmann, Robert [2 ]
Strueder, Lothar [1 ,3 ,4 ]
Savan, Alan [5 ]
Ludwig, Alfred [5 ]
Zotov, Nikolay [6 ]
Pietsch, Ullrich [1 ]
机构
[1] Univ Siegen, FB Phys, D-57072 Siegen, Germany
[2] PNSensor GmbH, Munich, Germany
[3] Planck Inst Extraterr Phys MPE, Munich, Germany
[4] MPI Halbleiterlab, Munich, Germany
[5] Ruhr Univ Bochum, Bochum, Germany
[6] Forschungszentrum Julich, D-52425 Julich, Germany
关键词
interdiffusion; iron-platinum; L-edge; pn-junction;
D O I
10.1002/pssa.201184268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A frame store pn-junction CCD (pnCCD) detector was applied to study thermally induced interdiffusion in Fe/Pt thin film multilayers (MLs) in a temperature range between 300 and 585 K. Based on the energy resolution of the detector the reflectivity was measured simultaneously in a spectral range between 8 keV < E < 20 keV including the Pt L-edge energies close to 11.5 keV. Above T - 533K we find a strong drop of intensities at 1st and 2nd order ML Bragg peak interpreted mutual interdiffusion. Considering a simulated model of interdiffusion it has been found that the concentration of iron that diffuses into the platinum sub layers is higher than that of platinum into iron. The time dependence of inter diffusion was also calculated in the range of 533-568K and was described by the Arrhenius equation D(T) - D(0) exp(-H(a)/k(B)T). The activation energy for the MLs used [Fe 1.7 nm/Pt 2 nm](50) was found to be 0.94 +/- 0.22 eV. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2601 / 2607
页数:7
相关论文
共 50 条
  • [31] Energy-dispersive x-ray fluorescence analysis of Celtic glasses
    Wobrauschek, P
    Halmetschlager, G
    Zamini, S
    Jokubonis, C
    Trnka, G
    Karwowski, M
    X-RAY SPECTROMETRY, 2000, 29 (01) : 25 - 33
  • [32] Energy-dispersive X-ray fluorescence – A tool for interdisciplinary research
    M SUDARSHAN
    S S RAM
    S MAJUMDAR
    J P MAITY
    J G RAY
    A CHAKRABORTY
    Pramana, 2011, 76 : 241 - 247
  • [33] ENERGY-DISPERSIVE X-RAY MICROSCOPY TO TRACE GADOLINIUM IN TISSUES
    ELSTER, AD
    RADIOLOGY, 1989, 173 (03) : 868 - 870
  • [34] X-RAY ENERGY-DISPERSIVE DIFFRACTOMETRY USING SYNCHROTRON RADIATION
    BURAS, B
    OLSEN, JS
    GERWARD, L
    WILL, G
    HINZE, E
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1977, 10 (DEC) : 431 - 438
  • [35] Element Analysis Based on Energy-Dispersive X-Ray Fluorescence
    Yao, Min
    Wang, Dongyue
    Zhao, Min
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015
  • [36] Energy-dispersive X-ray fluorescence analysis in geochemical mapping
    Civici, N
    VanGrieken, R
    X-RAY SPECTROMETRY, 1997, 26 (04) : 147 - 152
  • [37] ReSPEKT Energy-Dispersive x-Ray Fluorescence Composition Analyzer
    I. A. Tolokonnikov
    Atomic Energy, 2003, 95 : 510 - 511
  • [38] QUALITATIVE IDENTIFICATION OF ALLOYS BY ENERGY-DISPERSIVE X-RAY SPECTROSCOPY
    HARRISON, PE
    KENNA, BT
    TALANTA, 1972, 19 (06) : 810 - &
  • [39] PRINCIPLES OF DIFFERENTIAL ENERGY-DISPERSIVE X-RAY SPECTROSCOPY (DEDXS)
    COUSINS, CSG
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1988, 21 : 496 - 503
  • [40] ENERGY-DISPERSIVE X-RAY SPECTROMETRY - PRESENT STATE AND TRENDS
    VANGRIEKEN, R
    MARKOWICZ, A
    TOROK, S
    FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1986, 324 (08): : 825 - 831