Applications of an energy-dispersive pnCCD for X-ray reflectivity: Investigation of interdiffusion in Fe-Pt multilayers

被引:8
|
作者
Abboud, Ali [1 ]
Send, Sebastian [1 ]
Hartmann, Robert [2 ]
Strueder, Lothar [1 ,3 ,4 ]
Savan, Alan [5 ]
Ludwig, Alfred [5 ]
Zotov, Nikolay [6 ]
Pietsch, Ullrich [1 ]
机构
[1] Univ Siegen, FB Phys, D-57072 Siegen, Germany
[2] PNSensor GmbH, Munich, Germany
[3] Planck Inst Extraterr Phys MPE, Munich, Germany
[4] MPI Halbleiterlab, Munich, Germany
[5] Ruhr Univ Bochum, Bochum, Germany
[6] Forschungszentrum Julich, D-52425 Julich, Germany
关键词
interdiffusion; iron-platinum; L-edge; pn-junction;
D O I
10.1002/pssa.201184268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A frame store pn-junction CCD (pnCCD) detector was applied to study thermally induced interdiffusion in Fe/Pt thin film multilayers (MLs) in a temperature range between 300 and 585 K. Based on the energy resolution of the detector the reflectivity was measured simultaneously in a spectral range between 8 keV < E < 20 keV including the Pt L-edge energies close to 11.5 keV. Above T - 533K we find a strong drop of intensities at 1st and 2nd order ML Bragg peak interpreted mutual interdiffusion. Considering a simulated model of interdiffusion it has been found that the concentration of iron that diffuses into the platinum sub layers is higher than that of platinum into iron. The time dependence of inter diffusion was also calculated in the range of 533-568K and was described by the Arrhenius equation D(T) - D(0) exp(-H(a)/k(B)T). The activation energy for the MLs used [Fe 1.7 nm/Pt 2 nm](50) was found to be 0.94 +/- 0.22 eV. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2601 / 2607
页数:7
相关论文
共 50 条
  • [21] Fixed-angle, energy-dispersive X-ray reflectivity measurement of thin tantalum film thickness
    Windover, D
    Barnat, E
    Summers, J
    Lu, TM
    Kumar, A
    Bakhru, H
    Lee, SL
    JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (08) : 848 - 856
  • [22] Fixed-angle, energy-dispersive x-ray reflectivity measurement of thin tantalum film thickness
    D. Windover
    E. Barnat
    J. Summers
    T. -M. Lu
    A. Kumar
    H. Bakhru
    S. L. Lee
    Journal of Electronic Materials, 2002, 31 : 848 - 856
  • [23] Energy-dispersive X-ray diffraction mapping on a benchtop X-ray fluorescence system
    Lane, David W.
    Nyombi, Antony
    Shackel, James
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 488 - 494
  • [24] The transistor and energy-dispersive x-ray spectrometry: roots and milestones in x-ray analysis
    Ryon, RW
    X-RAY SPECTROMETRY, 2001, 30 (06) : 361 - 372
  • [25] Photon event evaluation for conventional pixelated detectors in energy-dispersive X-ray applications
    Baumann, Jonas
    Gnewkow, Richard
    Staeck, Steffen
    Szwedowski-Rammert, Veronika
    Schlesiger, Christopher
    Mantouvalou, Ioanna
    Kanngiesser, Birgit
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2018, 33 (12) : 2043 - 2052
  • [26] Energy-dispersive X-ray spectroscopy in a low energy electron microscope
    Tromp, Rudolf M.
    ULTRAMICROSCOPY, 2024, 259
  • [27] Energy-Dispersive X-ray Microanalysis of a Herbal Antimicrobial: Fifatrol
    Reddy, K. Ramachandra
    Sahni, Chetan
    Prasad, N. K.
    Anuraag, N. S.
    Chandana, K. Hari
    Vinay, K.
    Sharma, Sanchit
    ASIAN JOURNAL OF PHARMACEUTICS, 2023, 17 (01) : 59 - 63
  • [28] Energy-Dispersive X-Ray Microanalysis of Poststapedotomy Reparative Granuloma
    Topsakal, Vedat
    Willems, Stefan
    Tange, Rinze A.
    OTOLOGY & NEUROTOLOGY, 2014, 35 (01) : E62 - E63
  • [29] Design optimisation of an energy-dispersive X-ray diffraction analyser
    O'Dwyer, Joel
    Tickner, James
    APPLIED RADIATION AND ISOTOPES, 2019, 144 : 5 - 9
  • [30] The suppression of fluorescence peaks in energy-dispersive X-ray diffraction
    Hansford, G. M.
    Turner, S. M. R.
    Staab, D.
    Vernon, D.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 1708 - 1715