On combinatorial properties of Gruenberg-Kegel graphs of finite groups

被引:0
|
作者
Chen, Mingzhu [1 ]
Gorshkov, Ilya [2 ,3 ]
Maslova, Natalia V. [4 ,5 ]
Yang, Nanying [6 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570225, Hainan, Peoples R China
[2] RAS, Sobolev Inst Math SB, Novosibirsk 630090, Russia
[3] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[4] RAS, Krasovskii Inst Math & Mech UB, Ekaterinburg 620108, Russia
[5] Ural Fed Univ, Ekaterinburg 620002, Russia
[6] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 04期
基金
海南省自然科学基金; 俄罗斯科学基金会; 中国国家自然科学基金;
关键词
Finite group; Centralizer of involution; Gruenberg-Kegel graph (prime graph); Strongly regular graph; Complete multipartite graph; PRIME GRAPH; RECOGNITION;
D O I
10.1007/s00605-024-02005-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a finite group, then the spectrum omega(G) is the set of all element orders of G. The prime spectrum pi(G is the set of all primes belonging to omega(G). A simple graph Gamma(G) whose vertex set is pi(G) and in which two distinct vertices r and s are adjacent if and only if rs is an element of omega(G) is called the Gruenberg-Kegel graph or the prime graph of G. In this paper, we prove that if G is a group of even order, then the set of vertices which are non-adjacent to 2 in Gamma(G) forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg-Kegel graph of a finite group.
引用
收藏
页码:711 / 723
页数:13
相关论文
共 50 条
  • [41] An extension of the Kegel-Wielandt theorem to locally finite groups
    Franciosi, S
    DeGiovanni, F
    Sysak, YP
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 171 - 176
  • [42] Some properties of proper power graphs in finite Abelian groups
    Dhawlath, G.
    Raja, V.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
  • [43] Some Properties of Proper Power Graphs in Finite Abelian Groups
    Dhawlath, G.
    Raja, V.
    arXiv,
  • [44] COMBINATORIAL PROPERTIES OF PRODUCTS OF GRAPHS
    PUS, V
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (02) : 269 - 277
  • [45] Combinatorial properties of Farey graphs
    Wang, Yucheng
    Bao, Qi
    Zhang, Zhongzhi
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 70 - 89
  • [46] COMBINATORIAL PROPERTIES OF DEPENDENCE GRAPHS
    EHRENFEUCHT, A
    HOOGEBOOM, HJ
    ROZENBERG, G
    INFORMATION AND COMPUTATION, 1994, 114 (02) : 315 - 328
  • [47] A combinatorial problem on finite Abelian groups
    Gao, WD
    JOURNAL OF NUMBER THEORY, 1996, 58 (01) : 100 - 103
  • [48] Algebraic and combinatorial rank of divisors on finite graphs
    Caporaso, Lucia
    Len, Yoav
    Melo, Margarida
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (02): : 227 - 257
  • [49] Superpower graphs of finite groups
    Kumar, Ajay
    Selvaganesh, Lavanya
    Cameron, Peter J.
    Tamizh Chelvam, T.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [50] Factorization graphs of finite groups
    Farrokhi, Mohammad D. G.
    Azimi, Ali
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (1-2): : 183 - 199