On combinatorial properties of Gruenberg-Kegel graphs of finite groups

被引:0
|
作者
Chen, Mingzhu [1 ]
Gorshkov, Ilya [2 ,3 ]
Maslova, Natalia V. [4 ,5 ]
Yang, Nanying [6 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570225, Hainan, Peoples R China
[2] RAS, Sobolev Inst Math SB, Novosibirsk 630090, Russia
[3] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[4] RAS, Krasovskii Inst Math & Mech UB, Ekaterinburg 620108, Russia
[5] Ural Fed Univ, Ekaterinburg 620002, Russia
[6] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 04期
基金
海南省自然科学基金; 俄罗斯科学基金会; 中国国家自然科学基金;
关键词
Finite group; Centralizer of involution; Gruenberg-Kegel graph (prime graph); Strongly regular graph; Complete multipartite graph; PRIME GRAPH; RECOGNITION;
D O I
10.1007/s00605-024-02005-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a finite group, then the spectrum omega(G) is the set of all element orders of G. The prime spectrum pi(G is the set of all primes belonging to omega(G). A simple graph Gamma(G) whose vertex set is pi(G) and in which two distinct vertices r and s are adjacent if and only if rs is an element of omega(G) is called the Gruenberg-Kegel graph or the prime graph of G. In this paper, we prove that if G is a group of even order, then the set of vertices which are non-adjacent to 2 in Gamma(G) forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg-Kegel graph of a finite group.
引用
收藏
页码:711 / 723
页数:13
相关论文
共 50 条
  • [31] On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group
    N. V. Maslova
    K. A. Ilenko
    Proceedings of the Steklov Institute of Mathematics, 2022, 317 : S130 - S135
  • [32] Directed graphs and combinatorial properties of groups and semigroups
    Quinn, SJ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 68 (01) : 175 - 176
  • [33] ON RECOGNITION OF THE SPORADIC SIMPLE GROUPS HS, J3, Suz, O′N, Ly, Th, Fi23, AND Fi24′ BY THE GRUENBERG-KEGEL GRAPH
    Kondrat'ev, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (06) : 1087 - 1092
  • [34] Finite Groups with Given Properties of Their Prime Graphs
    A. S. Kondrat’ev
    Algebra and Logic, 2016, 55 : 77 - 82
  • [35] Finite Groups with Given Properties of Their Prime Graphs
    Kondrat'ev, A. S.
    ALGEBRA AND LOGIC, 2016, 55 (01) : 77 - 82
  • [36] COMBINATORIAL PROPERTIES OF INTERVALS IN FINITE SOLVABLE-GROUPS
    WELKER, V
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1567 - 1590
  • [37] Combinatorial Properties of Graphs and Groups of Physico-Chemical Interest
    El-Basil, Sherif
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2008, 11 (09) : 707 - 722
  • [38] Some Metrical Properties of Lattice Graphs of Finite Groups
    Liu, Jia-Bao
    Munir, Mobeen
    Munir, Qurat-ul-Ain
    Nizami, Abdul Rauf
    MATHEMATICS, 2019, 7 (05)
  • [39] Some properties of various graphs associated with finite groups
    Chen, X. Y.
    Moghaddamfar, A. R.
    Zohourattar, M.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 31 (02): : 195 - 211
  • [40] Power Graphs of Finite Groups Determined by Hosoya Properties
    Ali, Fawad
    Rather, Bilal Ahmad
    Din, Anwarud
    Saeed, Tareq
    Ullah, Asad
    ENTROPY, 2022, 24 (02)