Eigenfunctions and quantum transport with applications to trimmed Schrödinger operators

被引:0
|
作者
Hislop, Peter D. [1 ]
Kirsch, Werner [2 ]
Krishna, M. [3 ]
机构
[1] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA
[2] Fernuniv, Fak Math & Informat, D-58097 Hagen, Germany
[3] Ashoka Univ, Plot 2, Sonepat 131029, Haryana, India
关键词
SCHRODINGER-OPERATORS; ANDERSON MODEL; LOCALIZATION; SPECTRUM; DYNAMICS; DISORDER; DELOCALIZATION; SUBORDINACY;
D O I
10.1063/5.0192715
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a simple proof of dynamical delocalization, that is, time-increasing lower bounds on quantum transport for discrete, one-particle Schr & ouml;dinger operators on & ell;(2)(Z(d)), provided solutions to the Schr & ouml;dinger equation satisfy certain growth conditions. The proof is based on basic resolvent identities and the Combes-Thomas estimate on the exponential decay of the Green's function. As a consequence, we prove that generalized eigenfunctions for energies outside the spectrum of H must grow exponentially in some directions. We also prove that if H has any absolutely continuous spectrum, then the Schr & ouml;dinger operator exhibits dynamical delocalization. We apply the general result to Gamma-trimmed Schr & ouml;dinger operators, with periodic Gamma, and prove dynamical delocalization for these operators. These results also apply to the Gamma-trimmed Anderson model, providing a random, ergodic model exhibiting both dynamical localization in an energy interval and dynamical delocalization.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fall-Off of Eigenfunctions for Non-Local Schrödinger Operators with Decaying Potentials
    Kamil Kaleta
    József Lőrinczi
    Potential Analysis, 2017, 46 : 647 - 688
  • [22] Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators
    Yoram Last
    Barry Simon
    Inventiones mathematicae, 1999, 135 : 329 - 367
  • [23] Nodal Sets of Schrödinger Eigenfunctions in Forbidden Regions
    Yaiza Canzani
    John A. Toth
    Annales Henri Poincaré, 2016, 17 : 3063 - 3087
  • [24] Averaged Pointwise Bounds for Deformations of Schrödinger Eigenfunctions
    Suresh Eswarathasan
    John A. Toth
    Annales Henri Poincaré, 2013, 14 : 611 - 637
  • [25] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [26] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [27] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    Annales Henri Poincaré, 2011, 12 : 397 - 418
  • [28] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [29] Resonance Theory for Schrödinger Operators
    O. Costin
    A. Soffer
    Communications in Mathematical Physics, 2001, 224 : 133 - 152
  • [30] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    Mathematische Annalen, 1998, 312 : 659 - 716