Nodal Sets of Schrödinger Eigenfunctions in Forbidden Regions

被引:0
|
作者
Yaiza Canzani
John A. Toth
机构
[1] Harvard University,Institute for Advanced Study
[2] McGill University,Department of Mathematics and Statistics
来源
Annales Henri Poincaré | 2016年 / 17卷
关键词
Riemannian Manifold; Remainder Term; Unique Continuation; Holomorphic Continuation; Isotropic Harmonic Oscillator;
D O I
暂无
中图分类号
学科分类号
摘要
This note concerns the nodal sets of eigenfunctions of semiclassical Schrödinger operators acting on compact, smooth, Riemannian manifolds, with no boundary. In the case of real analytic surfaces, we obtain sharp upper bounds for the number of intersections of the zero sets of Schrödinger eigenfunctions with a fixed curve that lies inside the classically forbidden region.
引用
收藏
页码:3063 / 3087
页数:24
相关论文
共 50 条
  • [1] Nodal Sets of Schrodinger Eigenfunctions in Forbidden Regions
    Canzani, Yaiza
    Toth, John A.
    ANNALES HENRI POINCARE, 2016, 17 (11): : 3063 - 3087
  • [2] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [3] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [4] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [5] EIGENFUNCTIONS AND NODAL SETS
    CHENG, SY
    COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) : 43 - 55
  • [6] Nodal sets of sums of eigenfunctions
    Jerison, D
    Lebeau, G
    HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS: ESSAYS IN HONOR OF ALBERTO P CALDERON, 1999, : 223 - 239
  • [7] On the nodal sets of toral eigenfunctions
    Bourgain, Jean
    Rudnick, Zeev
    INVENTIONES MATHEMATICAE, 2011, 185 (01) : 199 - 237
  • [8] Nodal sets of Steklov eigenfunctions
    Bellova, Katarina
    Lin, Fang-Hua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 2239 - 2268
  • [9] Nodal sets of Steklov eigenfunctions
    Katarína Bellová
    Fang-Hua Lin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2239 - 2268
  • [10] EIGENFUNCTIONS WITH PRESCRIBED NODAL SETS
    Enciso, Alberto
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 197 - 211