Nodal Sets of Schrödinger Eigenfunctions in Forbidden Regions

被引:0
|
作者
Yaiza Canzani
John A. Toth
机构
[1] Harvard University,Institute for Advanced Study
[2] McGill University,Department of Mathematics and Statistics
来源
Annales Henri Poincaré | 2016年 / 17卷
关键词
Riemannian Manifold; Remainder Term; Unique Continuation; Holomorphic Continuation; Isotropic Harmonic Oscillator;
D O I
暂无
中图分类号
学科分类号
摘要
This note concerns the nodal sets of eigenfunctions of semiclassical Schrödinger operators acting on compact, smooth, Riemannian manifolds, with no boundary. In the case of real analytic surfaces, we obtain sharp upper bounds for the number of intersections of the zero sets of Schrödinger eigenfunctions with a fixed curve that lies inside the classically forbidden region.
引用
收藏
页码:3063 / 3087
页数:24
相关论文
共 50 条
  • [41] On a Schrödinger system with shrinking regions of attraction
    Clapp, Monica
    Saldana, Alberto
    Szulkin, Andrzej
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [42] Limit-periodic Schrödinger operators with uniformly localized eigenfunctions
    David Damanik
    Zheng Gan
    Journal d'Analyse Mathématique, 2011, 115 : 33 - 49
  • [43] Semiclassical Eigenfunctions of the Schrödinger Operator on a Graph That Are Localized Near a Subgraph
    A. I. Allilueva
    A. I. Shafarevich
    Russian Journal of Mathematical Physics, 2018, 25 : 139 - 147
  • [44] Pointwise Properties of Eigenfunctions and Heat Kernels of Dirichlet–Schrödinger Operators
    F. Cipriani
    G. Grillo
    Potential Analysis, 1998, 8 : 101 - 126
  • [45] Nodal solutions for fractional Schr?dinger-Poisson problems
    Wei Long
    Jianfu Yang
    Weilin Yu
    Science China(Mathematics), 2020, 63 (11) : 2267 - 2286
  • [46] LOCALIZED NODAL SOLUTIONS FOR SCHR?DINGER-POISSON SYSTEMS
    王星
    何锐
    刘祥清
    Acta Mathematica Scientia, 2022, 42 (05) : 1947 - 1970
  • [47] Nodal solutions for fractional Schrödinger-Poisson problems
    Wei Long
    Jianfu Yang
    Weilin Yu
    Science China Mathematics, 2020, 63 : 2267 - 2286
  • [48] Localized Nodal Solutions for Schrödinger-Poisson Systems
    Xing Wang
    Rui He
    Xiangqing Liu
    Acta Mathematica Scientia, 2022, 42 : 1947 - 1970
  • [49] Concentration behaviors of nodal solutions for a semiclassical Schrödinger equation
    Liu, Jiaquan
    Wang, Zhi-Qiang
    Zhao, Fukun
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [50] Rarefied sets at infinity associated with the Schrödinger operator
    Gaixian Xue
    Journal of Inequalities and Applications, 2014