Experimental study on thermal runaway venting behaviour of LiNi0.8Co0.1Mn0.1O2 pouch cell under different sealing edge directions

被引:0
|
作者
Wang, Peiben [1 ]
Xu, Chengshan [2 ]
Jiang, Weiran [3 ]
Wang, Wanlin [4 ]
Liu, Lirong [4 ]
Gu, Jiangna [4 ]
Fan, Zhuwei [1 ]
Zhang, Mengqi [1 ]
Huang, Jingru [1 ]
Jiang, Fachao [1 ]
Feng, Xuning [2 ]
机构
[1] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[3] Farasis Energy USA Inc, 21363 Cabot Blvd, Hayward, CA 94545 USA
[4] Farasis Energy GanZhou Co Ltd, Ganzhou 341000, Peoples R China
关键词
Thermal runaway; Pouch cell; Sealing edge; Venting gas; Battery safety; ION BATTERIES; PROPAGATION; OXIDE;
D O I
10.1016/j.jpowsour.2024.235327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In pouch cell modules, the sealing edges of the aluminum-plastic film are often installed facing either downward or up upward. The different sealing edge directions could lead to varying results of thermal runaway. The thermal runaway difference of different sealing edge install directions needs to be studied to help improve module safety. This paper proposes a novel experimental method for conducting thermal runaway tests on pouch cells with different sealing edge directions. The differences in heat generation and gas production of the cells are evaluated through Constant Volume Reactor and Gas Chromatograph analysis. The results indicate that the hazard is higher when the sealing edge is facing down compared to facing up. When thermal runaway is triggered in a 60 mm*60 mm heating area, the sealing edge facing downward delays the internal thermal runaway propagation time by 22.59 % compared to when it faces upward. The mass loss, peak venting pressure, and gas volume are respectively higher by 7.26 %, 14.52 %, and 1.78 %. Gas chromatograph analysis indicated minimal impact of sealing edge orientation on gas composition. This work provides guidance for the design of pouch cell modules, clarifying the optimal installation direction of sealing edges.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance
    Xiao Z.
    Hu C.
    Song L.
    Lu Y.
    Liu J.
    Zeng P.
    Huagong Xuebao/CIESC Journal, 2017, 68 (04): : 1652 - 1659
  • [42] Functional Passivation Interface of LiNi0.8Co0.1Mn0.1O2 toward Superior Lithium Storage
    Liu, Wen
    Li, Xifei
    Hao, Youchen
    Xiong, Dongbin
    Shan, Hui
    Wang, Jingjing
    Xiao, Wei
    Yang, Huijuan
    Yang, Hong
    Kou, Liang
    Tian, Zhanyuan
    Shao, Le
    Zhang, Cheng
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (13)
  • [43] Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2
    Li, Xiang-qun
    Xiong, Xun-hui
    Wang, Zhi-xing
    Chen, Qi-yuan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (12) : 4023 - 4029
  • [44] 氟化铵处理对LiNi0.8Co0.1Mn0.1O2性能的影响
    黄殿华
    电池, 2019, 49 (04) : 318 - 320
  • [45] Effect of Sintering Conditions on Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 as Cathode Material
    Li, Jing
    Zhang, Maolin
    Zhang, Dongyan
    Yan, Yangxi
    Li, Zhimin
    Nie, Zhiqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (03): : 1881 - 1892
  • [46] Ultra-high temperature reaction mechanism of LiNi0.8Co0.1Mn0.1O2 electrode
    Wu, Changjun
    Wu, Yu
    Feng, Xuning
    Wang, Huaibin
    Zhang, Fukui
    Chen, Siqi
    Li, Biao
    Deng, Tao
    Ouyang, Minggao
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [47] Preparation and Characterization of the LiNi0.8Co0.1Mn0.1O2 Cathode Active Material by Electrophoretic Deposition
    Joe, Youn Cheol
    Prasanna, K.
    Kang, Suk Hyun
    Jo, Yong Nam
    Lee, Chang Woo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (09) : 6494 - 6498
  • [48] Kinetic and transport characteristics of LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries
    Xu, Jinmei
    Gao, Pengfei
    Qiu, Xiangyun
    Li, Hongliang
    Zhuang, Quanchao
    Wu, Kai
    Zheng, Honghe
    SOLID STATE IONICS, 2023, 395
  • [49] Microscopic Mechanism of Influence of Doping F on Structure and Performance of LiNi0.8Co0.1Mn0.1O2
    Ren Ming-Ming
    Liu Ze-Pine
    Yuan Zhen-Luo
    Wang Yang
    Fan Guang-Xin
    Liu Bao-Zhong
    Luo Cheng-Guo
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (06) : 1046 - 1054
  • [50] Carbonized Polymer Dots Enhancing Interface Stability of LiNi0.8Co0.1Mn0.1O2 Cathodes
    Li, Lin
    Zhang, Yaojian
    Hu, Naifang
    Wang, Kejian
    Liu, Yuehui
    Wang, Xiaogang
    Zhou, Xinhong
    Ma, Jun
    Cui, Guanglei
    ADVANCED MATERIALS INTERFACES, 2023, 10 (20)