Experimental study on thermal runaway venting behaviour of LiNi0.8Co0.1Mn0.1O2 pouch cell under different sealing edge directions

被引:0
|
作者
Wang, Peiben [1 ]
Xu, Chengshan [2 ]
Jiang, Weiran [3 ]
Wang, Wanlin [4 ]
Liu, Lirong [4 ]
Gu, Jiangna [4 ]
Fan, Zhuwei [1 ]
Zhang, Mengqi [1 ]
Huang, Jingru [1 ]
Jiang, Fachao [1 ]
Feng, Xuning [2 ]
机构
[1] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[3] Farasis Energy USA Inc, 21363 Cabot Blvd, Hayward, CA 94545 USA
[4] Farasis Energy GanZhou Co Ltd, Ganzhou 341000, Peoples R China
关键词
Thermal runaway; Pouch cell; Sealing edge; Venting gas; Battery safety; ION BATTERIES; PROPAGATION; OXIDE;
D O I
10.1016/j.jpowsour.2024.235327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In pouch cell modules, the sealing edges of the aluminum-plastic film are often installed facing either downward or up upward. The different sealing edge directions could lead to varying results of thermal runaway. The thermal runaway difference of different sealing edge install directions needs to be studied to help improve module safety. This paper proposes a novel experimental method for conducting thermal runaway tests on pouch cells with different sealing edge directions. The differences in heat generation and gas production of the cells are evaluated through Constant Volume Reactor and Gas Chromatograph analysis. The results indicate that the hazard is higher when the sealing edge is facing down compared to facing up. When thermal runaway is triggered in a 60 mm*60 mm heating area, the sealing edge facing downward delays the internal thermal runaway propagation time by 22.59 % compared to when it faces upward. The mass loss, peak venting pressure, and gas volume are respectively higher by 7.26 %, 14.52 %, and 1.78 %. Gas chromatograph analysis indicated minimal impact of sealing edge orientation on gas composition. This work provides guidance for the design of pouch cell modules, clarifying the optimal installation direction of sealing edges.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Study on Preparation and Performance of LiNi0.8Co0.1Mn0.1O2 as cathode materials for lithium ion batteries
    Wang, Mingming
    Shi, Fangchang
    Yang, Hongzhou
    Gao, Cunsi Sun Yanmin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 9971 - 9980
  • [32] Impact of Surface Layer Formation during Cycling on the Thermal Stability of the LiNi0.8Co0.1Mn0.1O2 Cathode
    Komagata, Shogo
    Itou, Yuichi
    Kondo, Hiroki
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 8931 - 8937
  • [33] Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries
    Huang, Yue
    Wang, Zhi-xing
    Li, Xin-hai
    Guo, Hua-jun
    Wang, Jie-xi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2253 - 2259
  • [34] Thermoeletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3
    Song, Liubin
    Liu, Jiao
    Xiao, Zhongliang
    Cao, Zhong
    Zhu, Huali
    IONICS, 2018, 24 (11) : 3325 - 3335
  • [35] Thermoeletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3
    Liubin Song
    Jiao Liu
    Zhongliang Xiao
    Zhong Cao
    Huali Zhu
    Ionics, 2018, 24 : 3325 - 3335
  • [36] Effect of lower cut-off voltage on LiNi0.8Co0.1Mn0.1O2/graphite-SiOx pouch battery
    Wang, Lve
    Zhang, Bin
    Hu, Yichen
    Su, Zilong
    Zhao, Ting
    Li, Ang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2021, 25 (06) : 1743 - 1751
  • [37] Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method
    李灵均
    李新海
    王志兴
    伍凌
    郑俊超
    李金辉
    TransactionsofNonferrousMetalsSocietyofChina, 2010, 20(S1) (S1) : 279 - 282
  • [38] Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method
    Li Ling-jun
    Li Xin-hai
    Wang Zhi-xing
    Wu Ling
    Zheng Jun-chao
    Li Jin-hui
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 : S279 - S282
  • [39] Layered LiNi0.8Co0.1Mn0.1O2 Prepared through Calcination in Air with Preoxidized Precursor
    Duc-Luong Vu
    Choi, Jae-Young
    Kim, Woo-Byoung
    Lee, Jung Ju
    Lee, Jae-Won
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2670 - A2676
  • [40] Optimization of the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material by titanium doping
    Rui-Kai Yang
    Zhen-Guo Wu
    Yong-Chun Li
    Rong Li
    Lang Qiu
    Dong Wang
    Lin Yang
    Xiao-Dong Guo
    Ionics, 2020, 26 : 3223 - 3230