The abelianization of SL2(Z[1/m])

被引:1
|
作者
Nyberg-Brodda, Carl-Fredrik [1 ]
机构
[1] Korea Inst Adv Study KIAS, Sch Math, Seoul 02455, South Korea
关键词
Special linear group; Abelianization; Group presentation;
D O I
10.1016/j.jalgebra.2024.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all m > 1, we prove that the abelianization of SL2(Z[1/m]) is (1) trivial if 6 |m; (2) Z/3Z if 2 |m m and gcd(3, , m ) = 1; (3) Z / 4 Z if 3 |m m and gcd(2, m ) = 1; and (4) Z / 12 Z similar to= Z / 3 Z x Z/4Z if gcd(6, , m ) = 1. This completes known computational results of Bui Anh & Ellis for m < 50. The proof is elementary, and does not use the congruence subgroup property. We also find a new presentation for SL2(Z[1/2]) with two generators and three relators. This also gives new, simple presentations for the finite groups SL2(Z/mZ), where m is odd. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:614 / 618
页数:5
相关论文
共 50 条
  • [31] On modular forms for some noncongruence subgroups of SL2(Z)
    Kurth, Chris A.
    Long, Ling
    JOURNAL OF NUMBER THEORY, 2008, 128 (07) : 1989 - 2009
  • [32] ITERATED PRIMITIVES OF MEROMORPHIC QUASIMODULAR FORMS FOR SL2(Z)
    Matthes, Nils
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1443 - 1460
  • [33] Uniform congruence counting for Schottky semigroups in SL2(Z)
    Magee, Michael
    Oh, Hee
    Winter, Dale
    Bourgain, Jean
    Kontorovich, Alex
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 89 - 135
  • [34] Unstable homotopy invariance and the homology of SL2(Z[t])
    Knudson, KP
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (03) : 255 - 266
  • [35] A polyharmonic Maass form of depth 3/2 for SL2(Z)
    Ahlgren, Scott
    Andersen, Nickolas
    Samart, Detchat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 1018 - 1042
  • [36] A geometric proof that SL2(Z[t, t-1]) is not finitely presented
    Bux, Kai-Uwe
    Wortman, Kevin
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 839 - 852
  • [37] REFLEXIVE POLYTOPES IN DIMENSION 2 AND CERTAIN RELATIONS IN SL2 (Z)
    Hille, Lutz
    Skarke, Harald
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2002, 1 (02) : 159 - 173
  • [38] Reconstruction of Modular Data from SL2(Z) Representations
    Ng, Siu-Hung
    Rowell, Eric C.
    Wang, Zhenghan
    Wen, Xiao-Gang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 2465 - 2545
  • [39] Solving the membership problem for certain subgroups of SL2(Z)
    Han, Sandie
    Masuda, Ariane M.
    Singh, Satyanand
    Thiel, Johann
    JOURNAL OF ALGEBRA, 2024, 653 : 281 - 297
  • [40] Infinite-dimensional cohomology of SL2 (Z[t, t-1])
    Cobb, Sarah
    JOURNAL OF ALGEBRA, 2016, 462 : 181 - 196