The abelianization of SL2(Z[1/m])

被引:1
|
作者
Nyberg-Brodda, Carl-Fredrik [1 ]
机构
[1] Korea Inst Adv Study KIAS, Sch Math, Seoul 02455, South Korea
关键词
Special linear group; Abelianization; Group presentation;
D O I
10.1016/j.jalgebra.2024.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all m > 1, we prove that the abelianization of SL2(Z[1/m]) is (1) trivial if 6 |m; (2) Z/3Z if 2 |m m and gcd(3, , m ) = 1; (3) Z / 4 Z if 3 |m m and gcd(2, m ) = 1; and (4) Z / 12 Z similar to= Z / 3 Z x Z/4Z if gcd(6, , m ) = 1. This completes known computational results of Bui Anh & Ellis for m < 50. The proof is elementary, and does not use the congruence subgroup property. We also find a new presentation for SL2(Z[1/2]) with two generators and three relators. This also gives new, simple presentations for the finite groups SL2(Z/mZ), where m is odd. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:614 / 618
页数:5
相关论文
共 50 条
  • [21] ON REPRESENTATIONS OF INTEGERS IN THIN SUBGROUPS OF SL2(Z)
    Bourgain, Jean
    Kontorovich, Alex
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (05) : 1144 - 1174
  • [22] IRREDUCIBLE REPRESENTATIONS OF GROUP SL2(Z2)
    NOBS, A
    WOLFART, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (09): : 261 - 264
  • [23] Some elements of combinatorics of the matrices of SL2 (Z)
    Mabilat, Flavien
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [24] Homology and finiteness properties of SL2(Z[t, t-1])
    Knudson, Kevin P.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (04): : 2253 - 2261
  • [25] WEIL REPRESENTATIONS FOR GROUP SL2 (Z2)
    NOBS, A
    WOLFART, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (04): : 137 - 140
  • [26] On Turan number for Sl1 ∨ Sl2
    Li, Jia-Yun
    Li, Sha-Sha
    Yin, Jian-Hua
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 385
  • [27] MAXIMAL HAAGERUP SUBALGEBRAS IN L(Z2 (sic) SL2 (Z))
    Jiang, Yongle
    JOURNAL OF OPERATOR THEORY, 2021, 86 (01) : 203 - 230
  • [28] EXT1 FOR SL2
    CLINE, E
    COMMUNICATIONS IN ALGEBRA, 1979, 7 (01) : 107 - 111
  • [29] SUBCONVEXITY IMPLIES EFFECTIVE QUANTUM UNIQUE ERGODICITY FOR HECKE–MAASS CUSP FORMS ON SL2(Z)SL2(R)
    Bisain, Ankit
    Humphries, Peter
    Mandelshtam, Andrei
    Walsh, Noah
    Wang, Xun
    arXiv,
  • [30] Torsions in cohomology of SL2(Z) and congruence of modular forms
    Deng, Taiwang
    JOURNAL OF NUMBER THEORY, 2023, 246 : 87 - 156