Integrated Supervisory Control and Data Acquisition System for Optimized Energy Management: Leveraging Photovoltaic and Phase Change Material Thermal Storage

被引:2
|
作者
Shehram, Muhammad [1 ]
Hamidi, Muhammad Najwan [1 ]
Wahab, Aeizaal Azman Abdul [1 ]
Desa, Mohd Khairunaz Mat [1 ]
机构
[1] Univ Sains Malaysia Engn Campus, Sch Elect & Elect Engn, Nibong Tebal, Pulau Pinang, Malaysia
关键词
energy management system; flat plate collector; internet of things; phase change material; SCADA; solar PV; PERFORMANCE; INTERNET; POWER; MODEL; IOT;
D O I
10.1002/est2.70035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reliable energy sources are crucial for both economic growth and quality of life. In developing countries, where expensive fuels are often the primary energy source, governments are exploring innovative solutions like small-scale, IoT-based projects to achieve energy independence in buildings. This research investigates the integration of renewable energy technologies, statistical modeling, cloud computing, and IoT to develop a self-managing energy system for buildings. The system prioritizes renewable sources, specifically monocrystalline solar cells with 20% efficiency for photovoltaic (PV) energy and flat plate collectors with 90% efficiency and minimal energy loss for thermal energy. Thermal energy is stored in paraffin wax, chosen for its high storage efficiency and thermal properties. The system also utilizes an absorption chiller with a high coefficient of performance (COP) to provide cooling using solar thermal energy. The building's energy loads are categorized as A, B, C, and D, each utilizing both PV and thermal energy. A SCADA system oversees the operation, monitoring the on-off status of these loads. The system is designed for continuous operation, with simulations conducted using Anaconda Jupyter Notebook and Python. This model aims to offer a sustainable and efficient energy solution for buildings, meeting energy demands while optimizing energy use.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Phase change material with flexible crosslinking for thermal energy storage
    Wang, Yi
    Yuan, Anqian
    Zhao, Yuanyang
    Liu, Qinfeng
    Lei, Jingxin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (13)
  • [42] A NEW COMPOSITE PHASE CHANGE MATERIAL FOR THERMAL ENERGY STORAGE
    Su, Che-Fu
    Xiang, Xinrui
    Esmaeilzadeh, Hamed
    Wang, Jirui
    Fratto, Edward
    Charmchi, Majid
    Gu, Zhiyong
    Sun, Hongwei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
  • [43] Phase change material selection criteria for thermal energy storage
    Tietze, Tomasz
    Szulc, Piotr
    Smykowski, Daniel
    Sitka, Andrzej
    PRZEMYSL CHEMICZNY, 2018, 97 (09): : 1523 - 1526
  • [44] Phase change material-based thermal energy storage
    Yang, Tianyu
    King, William P.
    Miljkovic, Nenad
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (08):
  • [45] Photocrosslinked biobased phase change material for thermal energy storage
    Basturk, Emre
    Kahraman, Memet Vezir
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (32)
  • [46] Phase Change Material (PCM) Microcapsules for Thermal Energy Storage
    Peng, Guangjian
    Dou, Guijing
    Hu, Yahao
    Sun, Yiheng
    Chen, Zhitong
    ADVANCES IN POLYMER TECHNOLOGY, 2020, 2020
  • [47] Application of phase change material in thermal energy storage systems
    Kumar, Rahul
    Rao, Y. Anupam
    Yadav, Anil Singh
    Balu, Azmeera
    Panda, Bishnu Prasad
    Joshi, Manish
    Taneja, Sumit
    Sharma, Abhishek
    MATERIALS TODAY-PROCEEDINGS, 2022, 63 : 798 - 804
  • [48] Thermal behavior of encapsulated phase change material energy storage
    Al-Kayiem, Hussain H.
    Alhamdo, Mohammed H.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2012, 4 (01)
  • [49] Phase change materials in a hybrid solar thermal/photovoltaic energy storage system for a residential house
    Neto, Rui Costa
    Ferreira, Xavier
    Silva, Carlos Santos
    Sustainable Buildings, 2023, 6
  • [50] Thermal management of low concentrated photovoltaic module with phase change material
    Manikandan, S.
    Selvam, C.
    Poddar, Nikunj
    Pranjyal, Kishlay
    Lamba, Ravita
    Kaushik, S. C.
    JOURNAL OF CLEANER PRODUCTION, 2019, 219 : 359 - 367