Integrated Supervisory Control and Data Acquisition System for Optimized Energy Management: Leveraging Photovoltaic and Phase Change Material Thermal Storage

被引:2
|
作者
Shehram, Muhammad [1 ]
Hamidi, Muhammad Najwan [1 ]
Wahab, Aeizaal Azman Abdul [1 ]
Desa, Mohd Khairunaz Mat [1 ]
机构
[1] Univ Sains Malaysia Engn Campus, Sch Elect & Elect Engn, Nibong Tebal, Pulau Pinang, Malaysia
关键词
energy management system; flat plate collector; internet of things; phase change material; SCADA; solar PV; PERFORMANCE; INTERNET; POWER; MODEL; IOT;
D O I
10.1002/est2.70035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reliable energy sources are crucial for both economic growth and quality of life. In developing countries, where expensive fuels are often the primary energy source, governments are exploring innovative solutions like small-scale, IoT-based projects to achieve energy independence in buildings. This research investigates the integration of renewable energy technologies, statistical modeling, cloud computing, and IoT to develop a self-managing energy system for buildings. The system prioritizes renewable sources, specifically monocrystalline solar cells with 20% efficiency for photovoltaic (PV) energy and flat plate collectors with 90% efficiency and minimal energy loss for thermal energy. Thermal energy is stored in paraffin wax, chosen for its high storage efficiency and thermal properties. The system also utilizes an absorption chiller with a high coefficient of performance (COP) to provide cooling using solar thermal energy. The building's energy loads are categorized as A, B, C, and D, each utilizing both PV and thermal energy. A SCADA system oversees the operation, monitoring the on-off status of these loads. The system is designed for continuous operation, with simulations conducted using Anaconda Jupyter Notebook and Python. This model aims to offer a sustainable and efficient energy solution for buildings, meeting energy demands while optimizing energy use.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Environmental and economic management study of phase change material integrated bifacial photovoltaic thermal-greenhouse drying system: A thermal approach
    Sehrawat, Ravin
    Sahdev, Ravinder Kumar
    Chhabra, Deepak
    Tiwari, Sumit
    Khargotra, Rohit
    Singh, Tej
    Manisha
    ENERGY CONVERSION AND MANAGEMENT, 2023, 286
  • [22] Assessing the thermal performance of phase change material in a photovoltaic/thermal system
    Browne, Maria C.
    Quigley, Declan
    Hard, Hanna R.
    Gilligan, Sarah
    Ribeiro, Nadja C. C.
    Almeida, Nicholas
    McCormack, Sarah J.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY (SHC 2015), 2016, 91 : 113 - 121
  • [23] Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review
    Rathore, Pushpendra Kumar Singh
    Gupta, Naveen Kumar
    Yadav, Devanand
    Shukla, Shailendra Kumar
    Kaul, Sanjay
    SUSTAINABLE CITIES AND SOCIETY, 2022, 79
  • [24] Alarms management by supervisory control and data acquisition system for wind turbines
    Ramirez I.S.
    Mohammadi-Ivatloo B.
    Márquez F.P.G.
    Eksploatacja i Niezawodnosc, 2021, 23 (01) : 110 - 116
  • [25] Alarms management by supervisory control and data acquisition system for wind turbines
    Segovia Ramirez, Isaac
    Mohammadi-Ivatloo, Behnam
    Garcia Marquez, Fausto Pedro
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (01): : 110 - 116
  • [26] Thermal Regulation of Building-Integrated Concentrating Photovoltaic System using Phase Change Material
    Al Siyabi, Idris
    Sharma, Shivangi
    Mallick, Tapas K.
    Sundaram, Senthilarasu
    12TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-12), 2016, 1766
  • [27] Analysis and performance prediction of a building integrated photovoltaic thermal system with and without phase change material
    Alsagri, Ali Sulaiman
    Alrobaian, Abdulrahman A.
    ENERGY, 2024, 310
  • [28] Impregnation of porous material with phase change material for thermal energy storage
    Nomura, Takahiro
    Okinaka, Noriyuki
    Akiyama, Tomohiro
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (2-3) : 846 - 850
  • [29] Thermal performance of the packed bed thermal energy storage system with encapsulated phase change material
    Guo, Weimin
    He, Zhaoyu
    Zhang, Yuting
    Zhang, Peng
    RENEWABLE ENERGY, 2022, 196 : 1345 - 1356
  • [30] Indoor characterisation of a photovoltaic/thermal phase change material system
    Browne, Maria C.
    Lawlor, Keith
    Kelly, Adam
    Norton, Brian
    McCormack, Sarah J.
    INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY, SHC 2014, 2015, 70 : 163 - 171