GDMNet: A Unified Multi-Task Network for Panoptic Driving Perception

被引:0
|
作者
Liu, Yunxiang [1 ]
Ma, Haili [1 ]
Zhu, Jianlin [1 ]
Zhang, Qiangbo [1 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 02期
关键词
Autonomous driving; multitask learning; drivable area segmentation; lane detection; vehicle detection;
D O I
10.32604/cmc.2024.053710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To enhance the efficiency and accuracy of environmental perception for autonomous vehicles, we propose GDMNet, a unified multi-task perception network for autonomous driving, capable of performing drivable area segmentation, lane detection, and traffic object detection. Firstly, in the encoding stage, features are extracted, and Generalized Efficient Layer Aggregation Network (GELAN) is utilized to enhance feature extraction and gradient flow. Secondly, in the decoding stage, specialized detection heads are designed; the drivable area segmentation head employs DySample to expand feature maps, the lane detection head merges early-stage features and processes the output through the Focal Modulation Network (FMN). Lastly, the Minimum Point Distance IoU (MPDIoU) loss function is employed to compute the matching degree between traffic object detection boxes and predicted boxes, facilitating model training adjustments. Experimental results on the BDD100K dataset demonstrate that the proposed network achieves a drivable area segmentation mean intersection over union (mIoU) of 92.2%, lane detection accuracy and intersection over union (IoU) of 75.3% and 26.4%, respectively, and traffic object detection recall and mAP of 89.7% and 78.2%, respectively. The detection performance surpasses that of other single-task or multi-task algorithm models.
引用
收藏
页码:2963 / 2978
页数:16
相关论文
共 50 条
  • [1] Sparse U-PDP: A Unified Multi-Task Framework for Panoptic Driving Perception
    Wang, Hai
    Qiu, Meng
    Cai, Yingfeng
    Chen, Long
    Li, Yicheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 11308 - 11320
  • [2] Multi-task Network for Panoptic Segmentation in Automated Driving
    Petrovai, Andra
    Nedevschi, Sergiu
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2394 - 2401
  • [3] YOLOPX: Anchor-free multi-task learning network for panoptic driving perception
    Zhan, Jiao
    Luo, Yarong
    Guo, Chi
    Wu, Yejun
    Meng, Jiawei
    Liu, Jingnan
    PATTERN RECOGNITION, 2024, 148
  • [4] LidarMultiNet: Towards a Unified Multi-Task Network for LiDAR Perception
    Ye, Dongqiangzi
    Zhou, Zixiang
    Chen, Weijia
    Xie, Yufei
    Wang, Yu
    Wang, Panqu
    Foroosh, Hassan
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 3231 - 3240
  • [5] Multi-Task Environmental Perception Methods for Autonomous Driving
    Liu, Ri
    Yang, Shubin
    Tang, Wansha
    Yuan, Jie
    Chan, Qiqing
    Yang, Yunchuan
    SENSORS, 2024, 24 (17)
  • [6] A Multi-Task Network Based on Dual-Neck Structure for Autonomous Driving Perception
    Tan, Guopeng
    Wang, Chao
    Li, Zhihua
    Zhang, Yuanbiao
    Li, Ruikai
    SENSORS, 2024, 24 (05)
  • [7] Adversarial Attacks on Multi-task Visual Perception for Autonomous Driving
    Sobh, Ibrahim
    Hamed, Ahmed
    Kumar, Varun Ravi
    Yogamani, Senthil
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2021, 65 (06)
  • [8] Illegal Parking Detection Based on Multi-Task Driving Perception
    Kuo, Li-Chia
    Lin, Huei-Yung
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1865 - 1870
  • [9] OmniDet: Surround View Cameras Based Multi-Task Visual Perception Network for Autonomous Driving
    Kumar, Varun Ravi
    Yogamani, Senthil
    Rashed, Hazem
    Sitsu, Ganesh
    Witt, Christian
    Leang, Isabelle
    Milz, Stefan
    Maeder, Patrick
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 2830 - 2837
  • [10] CenterPNets: A Multi-Task Shared Network for Traffic Perception
    Chen, Guangqiu
    Wu, Tao
    Duan, Jin
    Hu, Qi
    Huang, Dandan
    Li, Hao
    SENSORS, 2023, 23 (05)