GDMNet: A Unified Multi-Task Network for Panoptic Driving Perception

被引:0
|
作者
Liu, Yunxiang [1 ]
Ma, Haili [1 ]
Zhu, Jianlin [1 ]
Zhang, Qiangbo [1 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 02期
关键词
Autonomous driving; multitask learning; drivable area segmentation; lane detection; vehicle detection;
D O I
10.32604/cmc.2024.053710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To enhance the efficiency and accuracy of environmental perception for autonomous vehicles, we propose GDMNet, a unified multi-task perception network for autonomous driving, capable of performing drivable area segmentation, lane detection, and traffic object detection. Firstly, in the encoding stage, features are extracted, and Generalized Efficient Layer Aggregation Network (GELAN) is utilized to enhance feature extraction and gradient flow. Secondly, in the decoding stage, specialized detection heads are designed; the drivable area segmentation head employs DySample to expand feature maps, the lane detection head merges early-stage features and processes the output through the Focal Modulation Network (FMN). Lastly, the Minimum Point Distance IoU (MPDIoU) loss function is employed to compute the matching degree between traffic object detection boxes and predicted boxes, facilitating model training adjustments. Experimental results on the BDD100K dataset demonstrate that the proposed network achieves a drivable area segmentation mean intersection over union (mIoU) of 92.2%, lane detection accuracy and intersection over union (IoU) of 75.3% and 26.4%, respectively, and traffic object detection recall and mAP of 89.7% and 78.2%, respectively. The detection performance surpasses that of other single-task or multi-task algorithm models.
引用
收藏
页码:2963 / 2978
页数:16
相关论文
共 50 条
  • [21] JPPF: Multi-task Fusion for Consistent Panoptic-Part Segmentation
    Muralidhara S.
    Jagadeesh S.K.
    Schuster R.
    Stricker D.
    SN Computer Science, 5 (1)
  • [22] RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception
    Li, Chunliang
    Han, Wencheng
    Yin, Junbo
    Zhao, Sanyuan
    Shen, Jianbing
    COMPUTER VISION - ECCV 2024, PT XXXII, 2025, 15090 : 273 - 292
  • [23] Multi-task Network Embedding
    Xu, Linchuan
    Wei, Xiaokai
    Cao, Jiannong
    Yu, Philip S.
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 571 - 580
  • [24] ConnectomeNet: A Unified Deep Neural Network Modeling Framework for Multi-Task Learning
    Lim, Heechul
    Chon, Kang-Wook
    Kim, Min-Soo
    IEEE ACCESS, 2023, 11 : 34297 - 34308
  • [25] Multi-task network embedding
    Linchuan Xu
    Xiaokai Wei
    Jiannong Cao
    Philip S. Yu
    International Journal of Data Science and Analytics, 2019, 8 : 183 - 198
  • [26] Multi-task network embedding
    Xu, Linchuan
    Wei, Xiaokai
    Cao, Jiannong
    Yu, Philip S.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (02) : 183 - 198
  • [27] YOLOMH: you only look once for multi-task driving perception with high efficiency
    Fang, Liu
    Bowen, Sun
    Jianxi, Miao
    Weixing, Su
    MACHINE VISION AND APPLICATIONS, 2024, 35 (03)
  • [28] YOLOMH: you only look once for multi-task driving perception with high efficiency
    Liu Fang
    Sun Bowen
    Miao Jianxi
    Su Weixing
    Machine Vision and Applications, 2024, 35
  • [29] Multi-Task Deep Learning Design and Training Tool for Unified Visual Driving Scene Understanding
    Won, Woong-Jae
    Kim, Tae Hun
    Kwon, Soon
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 356 - 360
  • [30] A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network
    Wang, Hai
    Li, Jianguo
    Cai, Yingfeng
    Chen, Long
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (09): : 1608 - 1616