Adversarial Attacks on Multi-task Visual Perception for Autonomous Driving

被引:3
|
作者
Sobh, Ibrahim [1 ]
Hamed, Ahmed [1 ]
Kumar, Varun Ravi [2 ]
Yogamani, Senthil [3 ]
机构
[1] Valeo R&D Egypt, Giza, Egypt
[2] Tech Univ Ilmenau, Valeo DAR Germany, Ilmenau, Germany
[3] Valeo Ireland, Galway, Ireland
关键词
D O I
10.2352/J.ImagingSci.Technol.2021.65.6.060408
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In recent years, deep neural networks (DNNs) have accomplished impressive success in various applications, including autonomous driving perception tasks. However, current deep neural networks are easily deceived by adversarial attacks. This vulnerability raises significant concerns, particularly in safety-critical applications. As a result, research into attacking and defending DNNs has gained much coverage. In this work, detailed adversarial attacks are applied on a diverse multi-task visual perception deep network across distance estimation, semantic segmentation, motion detection, and object detection. The experiments consider both white and black box attacks for targeted and un-targeted cases, while attacking a task and inspecting the effect on all others, in addition to inspecting the effect of applying a simple defense method. We conclude this paper by comparing and discussing the experimental results, proposing insights and future work. The visualizations of the attacks are available at https://youtu.be/6AixN90budY. (C) 2021 Society for Imaging Science and Technology.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multi-Task Environmental Perception Methods for Autonomous Driving
    Liu, Ri
    Yang, Shubin
    Tang, Wansha
    Yuan, Jie
    Chan, Qiqing
    Yang, Yunchuan
    SENSORS, 2024, 24 (17)
  • [2] OmniDet: Surround View Cameras Based Multi-Task Visual Perception Network for Autonomous Driving
    Kumar, Varun Ravi
    Yogamani, Senthil
    Rashed, Hazem
    Sitsu, Ganesh
    Witt, Christian
    Leang, Isabelle
    Milz, Stefan
    Maeder, Patrick
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 2830 - 2837
  • [3] Multi-task perception algorithm of autonomous driving based on temporal fusion
    Liu Z.-W.
    Fan S.-H.
    Qi M.-Y.
    Dong M.
    Wang P.
    Zhao X.-M.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2021, 21 (04): : 223 - 234
  • [4] Detecting Adversarial Perturbations in Multi-Task Perception
    Klingner, Marvin
    Kumar, Varun Ravi
    Yogamani, Senthil
    Baer, Andreas
    Fingscheidt, Tim
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 13050 - 13057
  • [5] Attribution of Adversarial Attacks via Multi-task Learning
    Guo, Zhongyi
    Han, Keji
    Ge, Yao
    Li, Yun
    Ji, Wei
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 81 - 94
  • [6] ATTA: Adversarial Task -transferable Attacks on Autonomous Driving Systems
    Hang, Qingjie
    Hang, Maosen
    Qiu, Han
    Hang, Tianwei
    Msahli, Mounira
    Memmi, Gerard
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 798 - 807
  • [7] Multi-Task Visual Perception for Object Detection and Semantic Segmentation in Intelligent Driving
    Zhan, Jiao
    Liu, Jingnan
    Wu, Yejun
    Guo, Chi
    REMOTE SENSING, 2024, 16 (10)
  • [8] A Multi-Task Network Based on Dual-Neck Structure for Autonomous Driving Perception
    Tan, Guopeng
    Wang, Chao
    Li, Zhihua
    Zhang, Yuanbiao
    Li, Ruikai
    SENSORS, 2024, 24 (05)
  • [9] Statistically correlated multi-task learning for autonomous driving
    Waseem Abbas
    Muhammad Fakhir Khan
    Murtaza Taj
    Arif Mahmood
    Neural Computing and Applications, 2021, 33 : 12921 - 12938
  • [10] Statistically correlated multi-task learning for autonomous driving
    Abbas, Waseem
    Khan, Muhammad Fakhir
    Taj, Murtaza
    Mahmood, Arif
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19): : 12921 - 12938