Pathway dynamics to double-cell premixed flames in lean hydrogen-air mixtures

被引:0
|
作者
Dominguez-Gonzalez, Alba [1 ]
Encinar, Miguel P. [2 ]
Martinez-Ruiz, Daniel [1 ]
机构
[1] Univ Politecn Madrid, Madrid 28040, Spain
[2] Univ Carlos III Madrid, Leganes, Spain
基金
欧洲研究理事会;
关键词
Hydrogen; Premixed flames; Bistability; Dynamics;
D O I
10.1016/j.proci.2024.105496
中图分类号
O414.1 [热力学];
学科分类号
摘要
The propagation of premixed flames over lean hydrogen-air mixtures have been found to be bistable in recent studies, considering slender channels with non-negligible conductive heat losses. In particular, two stable configurations conformed by either a circular or a double-cell flame front arise for the same combination of controlling parameters (fuel mixture, channel size and thermal conductivity). Nevertheless, this multiplicity of solutions lacks a satisfactory explanation to predict the formation of either one structure or the other during a particular ignition transient. In this work, detailed analyses are performed over the unsteady evolution of a set of numerical simulations. Specifically, the initial temperature profiles (distribution and peak value) and subsequent expansion of the flow field prescribe the early growth of the flame front leading to different curvatures and sizes of the kernel that control the evolution into each of the canonical structures. This study explores the underlying physics controlling the final-stage bistable behavior. In particular, the local convective effects and interactions between fronts have been identified as the key causes to produce each of the two stably propagating flames. Frequently found division of kernels cannot ensure the formation of double cells, which require additional reorientation dynamics and merging events due to asymmetric seeding of flame fragments or to interaction with neighboring structures.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dynamics and stability of premixed hydrogen-air flames in square microchannels with wall temperature gradients
    Lee, Sangyoon
    Lee, Bok Jik
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (02) : 1933 - 1943
  • [32] Boundary layer flashback limits and flame dynamics of turbulent premixed hydrogen-air flames
    Park, Jaehyun
    Kim, Kyu Tae
    COMBUSTION AND FLAME, 2025, 273
  • [33] High-frequency transverse combustion instabilities of lean-premixed multislit hydrogen-air flames
    Lee, Taesong
    Kim, Kyu Tae
    COMBUSTION AND FLAME, 2022, 238
  • [34] Hot surface ignition dynamics in premixed hydrogen-air near the lean flammability limit
    Boeck, L. R.
    Melguizo-Gavilanes, J.
    Shepherd, J. E.
    COMBUSTION AND FLAME, 2019, 210 : 467 - 478
  • [35] The mechanism of unsteady downstream interactions of premixed hydrogen-air flames
    Kolera-Gokula, Hemanth
    Echekki, Tarek
    COMBUSTION SCIENCE AND TECHNOLOGY, 2007, 179 (11) : 2309 - 2334
  • [36] Measurements of the laminar burning velocity of hydrogen-air premixed flames
    Pareja, Jhon
    Burbano, Hugo J.
    Ogami, Yasuhiro
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (04) : 1812 - 1818
  • [37] Measurements of the laminar burning velocity of hydrogen-air premixed flames
    Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108, 447 Medellín, Colombia
    不详
    Int J Hydrogen Energy, 4 (1812-1818):
  • [38] Local flame structure in hydrogen-air turbulent premixed flames
    Tanahashi, M
    Ito, Y
    Fujimura, M
    Miyauchi, T
    IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 269 - 277
  • [39] A structural study of premixed hydrogen-air cellular tubular flames
    Hall, Carl A.
    Pitz, Robert W.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 973 - 980
  • [40] Effect of confinement on the propagation patterns of lean hydrogen-air flames
    Dejoan, Anne
    Zhou, Zhenghong
    Fernandez-Galisteo, Daniel
    Ronney, Paul D.
    Kurdyumov, Vadim N.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)