Pathway dynamics to double-cell premixed flames in lean hydrogen-air mixtures

被引:0
|
作者
Dominguez-Gonzalez, Alba [1 ]
Encinar, Miguel P. [2 ]
Martinez-Ruiz, Daniel [1 ]
机构
[1] Univ Politecn Madrid, Madrid 28040, Spain
[2] Univ Carlos III Madrid, Leganes, Spain
基金
欧洲研究理事会;
关键词
Hydrogen; Premixed flames; Bistability; Dynamics;
D O I
10.1016/j.proci.2024.105496
中图分类号
O414.1 [热力学];
学科分类号
摘要
The propagation of premixed flames over lean hydrogen-air mixtures have been found to be bistable in recent studies, considering slender channels with non-negligible conductive heat losses. In particular, two stable configurations conformed by either a circular or a double-cell flame front arise for the same combination of controlling parameters (fuel mixture, channel size and thermal conductivity). Nevertheless, this multiplicity of solutions lacks a satisfactory explanation to predict the formation of either one structure or the other during a particular ignition transient. In this work, detailed analyses are performed over the unsteady evolution of a set of numerical simulations. Specifically, the initial temperature profiles (distribution and peak value) and subsequent expansion of the flow field prescribe the early growth of the flame front leading to different curvatures and sizes of the kernel that control the evolution into each of the canonical structures. This study explores the underlying physics controlling the final-stage bistable behavior. In particular, the local convective effects and interactions between fronts have been identified as the key causes to produce each of the two stably propagating flames. Frequently found division of kernels cannot ensure the formation of double cells, which require additional reorientation dynamics and merging events due to asymmetric seeding of flame fragments or to interaction with neighboring structures.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Structure of turbulent rich hydrogen-air premixed flames
    Sun, Zuo-Yu
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (08) : 2845 - 2858
  • [22] MECHANISM OF COMBUSTION REACTIONS IN HYDROGEN-AIR PREMIXED FLAMES
    FUKUTANI, S
    KUNIOSHI, N
    JINNO, H
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1990, 63 (08) : 2191 - 2198
  • [23] How "mixing"affects propagation and structure of intensely turbulent, lean, hydrogen-air premixed flames
    Yuvraj
    Im, Hong G.
    Chaudhuri, Swetaprovo
    COMBUSTION AND FLAME, 2025, 273
  • [24] Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel
    Alipoor, Alireza
    Mazaheri, Kiumars
    ENERGY, 2020, 194
  • [25] Lean hydrogen-air premixed flame with heat loss
    Gavrikov, Andrey I.
    Golub, Victor V.
    Mikushkin, Anton Yu
    Petukhov, Vyatcheslav A.
    Volodin, Vladislav V.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (36) : 20462 - 20469
  • [26] Self-similar propagation of spherically expanding flames in lean hydrogen-air mixtures
    Kim, Wookyung
    Namba, Takumi
    Johzaki, Tomoyuki
    Endo, Takuma
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 25608 - 25614
  • [27] ASYMPTOTIC ANALYSES OF STOICHIOMETRIC AND LEAN HYDROGEN-AIR FLAMES
    SESHADRI, K
    PETERS, N
    WILLIAMS, FA
    COMBUSTION AND FLAME, 1994, 96 (04) : 407 - 427
  • [28] Asymptotic analyses of stoichiometric and lean hydrogen-air flames
    Seshadri, K.
    Peters, N.
    Williams, F.A.
    Combustion and Flame, 1994, 96 (04): : 407 - 427
  • [29] Effect of Impurities on Lean Laminar Hydrogen-Air Flames
    Tereza, A. M.
    Agafonov, G. L.
    Anderzhanov, E. K.
    Betev, A. S.
    Medvedev, S. P.
    Mikhalkin, V. N.
    Khomik, S. V.
    Cherepanova, T. T.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 17 (06) : 1294 - 1299
  • [30] Ignition delay of lean hydrogen-air mixtures
    Krivosheyev, Pavel
    Kisel, Yuliya
    Skilandz, Lexander
    Sevrouk, Kirill
    Penyazkov, Oleg
    Tereza, Anatoly
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 66 : 81 - 89