Exploring Phytochemical Compounds: A Computational Study for HIV-1 Reverse Transcriptase Inhibition

被引:0
|
作者
Bandi, Jyotsna [1 ]
Chunduru, Madhan [1 ]
Mangamuri, Satya Tulasi [1 ]
Nelapati, Anand Kumar [1 ]
Naravula, Jalaja [1 ]
Mulpuru, Viswajit [1 ]
机构
[1] Deemed Univ, Vignans Fdn Sci Technol & Res, Dept Biotechnol, Vadlamudi 522213, Andhra Pradesh, India
关键词
HIV; phytochemical therapeutics; molecular docking; molecular dynamic simulations; antiviral agent; STRUCTURE-BASED DESIGN; VIRUS TYPE-1 HIV-1; VITRO ANTI-HIV; PLANT-EXTRACTS; MEDICINAL-PLANTS; POTENT; SUBSTANCES; L;
D O I
10.2174/0115701646316517240901091407
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background HIV-1 is the most virulent type, causing most AIDS cases worldwide. Therapeutics like NRTIs and NNRTIs terminate replication by terminating polymerization reactions. Natural-based therapeutics are increasingly being used to reduce side effects and combat disease.Method The study focuses on identifying phytochemical compounds that effectively inhibit the HIV-1 reverse transcriptase process using molecular docking and molecular dynamic simulations.Result Molecular docking results show anisomelolide has a significantly stronger binding affinity (-29.9992KJ/mol) compared to nevirapine (-13.34696 KJ/mol), forming more hydrogen bonds and hydrophilic interactions, indicating a more stable and specific binding. MD simulations further support these findings, with anisomelolide exhibiting lower RMSD and RMSF values, suggesting greater structural stability and lower flexibility. Interaction energy analysis reveals robust binding and stability for anisomelolide over time. Additionally, hydrogen bond analysis indicates more frequent and stronger interactions for anisomelolide.Conclusion The phytochemical compound anisomelolide exhibits superior binding affinity, structural stability, and interaction dynamics, making it a promising candidate for drug development against HIV-1 RT.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Evolving understanding of HIV-1 reverse transcriptase structure, function, inhibition, and resistance
    Ruiz, Francesc Xavier
    Arnold, Eddy
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 61 : 113 - 123
  • [32] Inhibition of HIV-1 reverse transcriptase by methanol extracts of commercial herbs and spices
    Kobayashi, Y
    Watanabe, M
    Ogihara, J
    Kato, J
    Oishi, K
    JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY-NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 2000, 47 (08): : 642 - 645
  • [33] Reverse transcriptase fidelity and HIV-1 variation
    Preston, BD
    SCIENCE, 1997, 275 (5297) : 228 - 229
  • [34] HIV-1 Reverse Transcriptase Heterodimer Stability
    Kar, S. R.
    Lebowitz, J.
    Braswell, E.
    McPherson, S.
    Protein Engineering, 8
  • [35] Structure and Function of HIV-1 Reverse Transcriptase: Molecular Mechanisms of Polymerization and Inhibition
    Sarafianos, Stefan G.
    Marchand, Bruno
    Das, Kalyan
    Himmel, Daniel M.
    Parniak, Michael A.
    Hughes, Stephen H.
    Arnold, Eddy
    JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (03) : 693 - 713
  • [36] FIDELITY OF HIV-1 REVERSE-TRANSCRIPTASE
    PRESTON, BD
    POIESZ, BJ
    LOEB, LA
    SCIENCE, 1988, 242 (4882) : 1168 - 1171
  • [37] An overview on HIV-1 reverse transcriptase inhibitors
    Ravichandran, Shalini
    Veerasamy, Ravichandran
    Raman, Saraswathi
    Krishnan, Palamadai Neelakandam
    Agrawal, Ram Kishore
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2008, 3 (04) : 171 - 187
  • [38] ENHANCEMENT OF HIV-1 PROTEINASE ACTIVITY BY HIV-1 REVERSE-TRANSCRIPTASE
    GOOBARLARSSON, L
    LUUKKONEN, BGM
    UNGE, T
    SCHWARTZ, S
    UTTER, G
    STRANDBERG, B
    OBERG, B
    VIROLOGY, 1995, 206 (01) : 387 - 394
  • [39] Selective inhibition of HIV-1 reverse transcriptase (HIV-1 RT) RNase H by small RNA hairpins and dumbbells
    Hannoush, RN
    Carriero, S
    Min, KL
    Damha, MJ
    CHEMBIOCHEM, 2004, 5 (04) : 527 - 533
  • [40] Synergistic inhibition of HIV-1 reverse transcriptase and HIV-1 replication by combining trovirdine with AZT, ddl and ddC in vitro
    Zhang, H
    Vrang, L
    Rydergard, C
    Ahgren, C
    Oberg, B
    ANTIVIRAL CHEMISTRY & CHEMOTHERAPY, 1996, 7 (05): : 221 - 229