p-Adic hypergeometric functions and the trace of Frobenius of elliptic curves

被引:0
|
作者
Sulakashna, Rupam [1 ]
Barman, Rupam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
关键词
Character sum; hypergeometric series; elliptic curves; p-adic gamma function; GAMMA FUNCTION; SPECIAL VALUES; FINITE-FIELDS; SERIES; NUMBER; SUMS;
D O I
10.1142/S1793042124501276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and q = pr,r >= 1. For positive integers n,let n Gn[<middle dot><middle dot><middle dot>]qdenoteMcCarthy's p-adic hypergeometric function. In this paper, we prove an identity express-ing a4G4[<middle dot><middle dot><middle dot>]qhypergeometric function as a sum of two2G2[<middle dot><middle dot><middle dot>]qhypergeometric func-tions. This identity generalizes some known identities satisfied by the finite field hyper-geometric functions. We also prove a transformation that relatesn+2Gn+2[<middle dot><middle dot><middle dot>]qandnGn[<middle dot><middle dot><middle dot>]qhypergeometric functions. Next, we express the trace of Frobenius of ellipticcurves in terms of special values of4G4[<middle dot><middle dot><middle dot>]qand6G6[<middle dot><middle dot><middle dot>]qhypergeometric functions.Our results extend the recent works of Tripathi and Meher on the finite field hypergeo-metric functions to wider classes of primes
引用
收藏
页码:2663 / 2694
页数:32
相关论文
共 50 条
  • [41] P-ADIC K-THEORY OF ELLIPTIC-CURVES
    SOULE, C
    DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) : 249 - 269
  • [42] Cryptography on elliptic curves over p-adic number fields
    Xu MaoZhi
    Zhao ChunLai
    Feng Min
    Ren ZhaoRong
    Ye JiQing
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (03): : 258 - 272
  • [43] p-Adic GKZ hypergeometric complex
    Fu, Lei
    Li, Peigen
    Wan, Daqing
    Zhang, Hao
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1629 - 1689
  • [44] The Mobius-Wall congruences for p-adic L-functions of CM elliptic curves
    Bouganis, Thanasis
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2014, 156 (01) : 183 - 192
  • [45] ON THE DE RHAM AND p-ADIC REALIZATIONS OF THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES
    Bannai, Kenichi
    Kobayashi, Shinichi
    Tsuji, Takeshi
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (02): : 185 - 234
  • [46] An analogue of Kida's formula for the p-adic L-functions of modular elliptic curves
    Matsuno, K
    JOURNAL OF NUMBER THEORY, 2000, 84 (01) : 80 - 92
  • [47] p-ADIC L-FUNCTIONS AND RATIONAL POINTS ON CM ELLIPTIC CURVES AT INERT PRIMES
    Burungale, Ashay A.
    Kobayashi, Shinichi
    Ota, Kazuto
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (03) : 1417 - 1460
  • [48] Anticyclotomic p-adic L-functions for elliptic curves at some additive reduction primes
    Kohen, Daniel
    Pacetti, Ariel
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (10) : 973 - 983
  • [49] p-adic L-functions and Selmer varieties associated to elliptic curves with complex multiplication
    Kim, Minhyong
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 751 - 759
  • [50] p-Adic differential equations and p-adic coefficients on curves
    Christol, G
    Mebkhout, Z
    ASTERISQUE, 2002, (279) : 125 - +