p-Adic hypergeometric functions and the trace of Frobenius of elliptic curves

被引:0
|
作者
Sulakashna, Rupam [1 ]
Barman, Rupam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
关键词
Character sum; hypergeometric series; elliptic curves; p-adic gamma function; GAMMA FUNCTION; SPECIAL VALUES; FINITE-FIELDS; SERIES; NUMBER; SUMS;
D O I
10.1142/S1793042124501276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and q = pr,r >= 1. For positive integers n,let n Gn[<middle dot><middle dot><middle dot>]qdenoteMcCarthy's p-adic hypergeometric function. In this paper, we prove an identity express-ing a4G4[<middle dot><middle dot><middle dot>]qhypergeometric function as a sum of two2G2[<middle dot><middle dot><middle dot>]qhypergeometric func-tions. This identity generalizes some known identities satisfied by the finite field hyper-geometric functions. We also prove a transformation that relatesn+2Gn+2[<middle dot><middle dot><middle dot>]qandnGn[<middle dot><middle dot><middle dot>]qhypergeometric functions. Next, we express the trace of Frobenius of ellipticcurves in terms of special values of4G4[<middle dot><middle dot><middle dot>]qand6G6[<middle dot><middle dot><middle dot>]qhypergeometric functions.Our results extend the recent works of Tripathi and Meher on the finite field hypergeo-metric functions to wider classes of primes
引用
收藏
页码:2663 / 2694
页数:32
相关论文
共 50 条
  • [31] p-Adic interpolation of the Fibonacci sequence via hypergeometric functions
    Bihani, P
    Sheppard, WP
    Young, PT
    FIBONACCI QUARTERLY, 2005, 43 (03): : 213 - 226
  • [32] p-Adic hypergeometric functions and certain weight three newforms
    Sulakashna
    Barman, Rupam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [33] COUNTING POINTS ON DWORK HYPERSURFACES AND p-ADIC HYPERGEOMETRIC FUNCTIONS
    Barman, Rupam
    Rahman, Hasanur
    Saikia, Neelam
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (02) : 208 - 216
  • [34] Some applications of p-adic points of view to elliptic curves
    Goldstein, C
    EUROPEAN WOMEN IN MATHEMATICS, 1999, : 77 - 97
  • [35] Cryptography on elliptic curves over p-adic number fields
    MaoZhi Xu
    ChunLai Zhao
    Min Feng
    ZhaoRong Ren
    JiQing Ye
    Science in China Series F: Information Sciences, 2008, 51 : 258 - 272
  • [36] ELLIPTIC UNITS AND P-ADIC L-FUNCTIONS
    GILLARD, R
    COMPOSITIO MATHEMATICA, 1980, 42 (01) : 57 - 88
  • [37] Arithmetic properties of p-adic elliptic logarithmic functions
    Hirata-Kohno, Noriko
    GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES, 2012, 7 : 110 - 119
  • [38] Uniformization of modular elliptic curves via p-adic periods
    Guitart, Xavier
    Masdeu, Marc
    Senguen, Mehmet Haluk
    JOURNAL OF ALGEBRA, 2016, 445 : 458 - 502
  • [39] Cryptography on elliptic curves over p-adic number fields
    XU MaoZhi 1
    2 China Electronic Equipment System Engineering Corporation
    3 Microsoft Research Asia
    ScienceinChina(SeriesF:InformationSciences), 2008, (03) : 258 - 272
  • [40] UNIVERSAL EXTENSIONS AND P-ADIC PERIODS OF ELLIPTIC-CURVES
    CREW, R
    COMPOSITIO MATHEMATICA, 1990, 73 (01) : 107 - 119