p-Adic hypergeometric functions and the trace of Frobenius of elliptic curves

被引:0
|
作者
Sulakashna, Rupam [1 ]
Barman, Rupam [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
关键词
Character sum; hypergeometric series; elliptic curves; p-adic gamma function; GAMMA FUNCTION; SPECIAL VALUES; FINITE-FIELDS; SERIES; NUMBER; SUMS;
D O I
10.1142/S1793042124501276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and q = pr,r >= 1. For positive integers n,let n Gn[<middle dot><middle dot><middle dot>]qdenoteMcCarthy's p-adic hypergeometric function. In this paper, we prove an identity express-ing a4G4[<middle dot><middle dot><middle dot>]qhypergeometric function as a sum of two2G2[<middle dot><middle dot><middle dot>]qhypergeometric func-tions. This identity generalizes some known identities satisfied by the finite field hyper-geometric functions. We also prove a transformation that relatesn+2Gn+2[<middle dot><middle dot><middle dot>]qandnGn[<middle dot><middle dot><middle dot>]qhypergeometric functions. Next, we express the trace of Frobenius of ellipticcurves in terms of special values of4G4[<middle dot><middle dot><middle dot>]qand6G6[<middle dot><middle dot><middle dot>]qhypergeometric functions.Our results extend the recent works of Tripathi and Meher on the finite field hypergeo-metric functions to wider classes of primes
引用
收藏
页码:2663 / 2694
页数:32
相关论文
共 50 条