Tracking the coupling conversion of C1-C4 aldehydes with methanol-to-hydrocarbon reaction

被引:0
|
作者
Xiao, Tianci [1 ]
Luo, Jinsong [1 ]
Liu, Chengyuan [1 ]
Pan, Yang [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
关键词
Methanol-to-hydrocarbon; Aromatic; Oxygenate; H -poor hydrocarbon; Synchrotron radiation photoionization mass; spectrometry; C-1-C-4; aldehydes; PRODUCT DISTRIBUTION; BOND FORMATION; ZEOLITE; ACETALDEHYDE; MFI; DEACTIVATION; MECHANISM; CATALYSIS; BIOMASS; OLEFINS;
D O I
10.1016/j.apcata.2024.119948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Small-molecule aldehydes are promising additives to regulate product distribution in methanol-to-hydrocarbon (MTH) reaction. Herein, the co-feeding of C-1-C-4 aldehydes with methanol resulted in a significant increase in aromatic formation with the order: acetaldehyde > formaldehyde > propanal approximate to butanal. The mechanistic basis for this enhancement in aromatic production derived from both a direct participation pathway of aldehydes and an indirect pathway via driving the aromatic-based cycle. C2+ aldehydes could undergo multiple aldol-condensation on Br & oslash;nsted acid sites to form larger alkenals, followed by sequential cyclization-dehydration reaction to cycloalkenes or aromatic species. The Prins reaction could be extended to all C-1-C-4 aldehydes with alkenes by generating the corresponding dienes. The hydrogen transfer from methanol to C2+ aldehydes produced C2+ olefins and formaldehyde, which would lead to extra formaldehyde-mediated aromatic formation pathway. The intricate evolution pathway of C-1-C-4 aldehydes in MTH reaction was constructed by detecting abundant oxygenate and hydrocarbon intermediates.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Coupling Conversion of Methanol and C4 Hydrocarbon to Propylene on La-Modified HZSM-5 Zeolite Catalysts
    Gong, Ting
    Zhang, Xin
    Bai, Ting
    Zhang, Quiquan
    Tao, Lin
    Qi, Mi
    Duan, Chao
    Zhang, Li
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (42) : 13589 - 13598
  • [32] Research Progress of Co-Conversion of CO2 and C1-C4 Alkanes (A Review)
    Cheng, S.
    Ni, Z.
    Guo, Y.
    Shi, Y.
    Wang, Q.
    Li, J.
    Ya, W.
    Zhang, Q.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2024, 94 (11) : 3052 - 3068
  • [33] C1-C4 hydrocarbon release in the preparation of SiF4 through Na2SiF6 pyrolysis
    Krylov, V. A.
    Sorochkina, T. G.
    Bulanov, A. D.
    Lashkov, A. Yu.
    INORGANIC MATERIALS, 2012, 48 (01) : 7 - 9
  • [34] CATALYTIC-OXIDATION OF C1-C4 ALCOHOLS ON SILVER
    KURINA, LN
    MOROZOV, VP
    ZHURNAL FIZICHESKOI KHIMII, 1976, 50 (04): : 904 - 906
  • [35] GAS-LIQUID CHROMATOGRAPHY OF C1-C4 NITROPARAFFINS
    BIERNACKI, W
    URBANSKI, T
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES CHIMIQUES, 1962, 10 (11-1): : 601 - +
  • [36] Generation of a unified C1-C4 core oxidation mechanism
    Metcalfe, Wayne K.
    Burke, Sinead
    Curran, Henry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [37] DETERMINATION OF C1-C4 ALKANES BY ION MOBILITY SPECTROMETRY
    KOJIRO, DR
    COHEN, MJ
    STIMAC, RM
    WERNLUND, RF
    HUMPHRY, DE
    TAKEUCHI, N
    ANALYTICAL CHEMISTRY, 1991, 63 (20) : 2295 - 2300
  • [38] BRING YOUR C1-C4 DATA UP TO DATE
    SCIANCE, CT
    COLVER, CP
    SLIEPCEV.CM
    HYDROCARBON PROCESSING, 1967, 46 (09): : 173 - &
  • [39] Speed of sound measurements of liquid C1-C4 alkanols
    Davila, Maria J.
    Gedanitz, Holger
    Span, Roland
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2016, 93 : 157 - 163
  • [40] CATALYTIC-OXIDATION OF C1-C4 ALCOHOLS ON SILVER
    KURINA, LN
    MOROZOV, VP
    ZHURNAL FIZICHESKOI KHIMII, 1977, 51 (09): : 2257 - 2260