Tracking the coupling conversion of C1-C4 aldehydes with methanol-to-hydrocarbon reaction

被引:0
|
作者
Xiao, Tianci [1 ]
Luo, Jinsong [1 ]
Liu, Chengyuan [1 ]
Pan, Yang [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
关键词
Methanol-to-hydrocarbon; Aromatic; Oxygenate; H -poor hydrocarbon; Synchrotron radiation photoionization mass; spectrometry; C-1-C-4; aldehydes; PRODUCT DISTRIBUTION; BOND FORMATION; ZEOLITE; ACETALDEHYDE; MFI; DEACTIVATION; MECHANISM; CATALYSIS; BIOMASS; OLEFINS;
D O I
10.1016/j.apcata.2024.119948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Small-molecule aldehydes are promising additives to regulate product distribution in methanol-to-hydrocarbon (MTH) reaction. Herein, the co-feeding of C-1-C-4 aldehydes with methanol resulted in a significant increase in aromatic formation with the order: acetaldehyde > formaldehyde > propanal approximate to butanal. The mechanistic basis for this enhancement in aromatic production derived from both a direct participation pathway of aldehydes and an indirect pathway via driving the aromatic-based cycle. C2+ aldehydes could undergo multiple aldol-condensation on Br & oslash;nsted acid sites to form larger alkenals, followed by sequential cyclization-dehydration reaction to cycloalkenes or aromatic species. The Prins reaction could be extended to all C-1-C-4 aldehydes with alkenes by generating the corresponding dienes. The hydrogen transfer from methanol to C2+ aldehydes produced C2+ olefins and formaldehyde, which would lead to extra formaldehyde-mediated aromatic formation pathway. The intricate evolution pathway of C-1-C-4 aldehydes in MTH reaction was constructed by detecting abundant oxygenate and hydrocarbon intermediates.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] KINETIC EVALUATIONS OF INDIVIDUAL HYDROCARBON (C1-C4) GENERATION BY NONISOTHERMAL SOURCE-ROCK PYROLYSIS
    LILLACK, H
    SCHWOCHAU, K
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1994, 28 (01) : 121 - 136
  • [22] Climate Metrics for C1-C4 Hydrofluorocarbons (HFCs)
    Burkholder, James B.
    Marshall, Paul
    Bera, Partha P.
    Francisco, Joseph S.
    Lee, Timothy J.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (23): : 4793 - 4800
  • [23] OXIDATIVE METHYLATION OF TOLUENE WITH C1-C4 PARAFFINS
    KHCHEYAN, KY
    REVENKO, OM
    BORISOGLEBSKAYA, AV
    FRADKOV, YZ
    PETROLEUM CHEMISTRY, 1981, 21 (01) : 18 - 28
  • [24] C1-C4 HYDROCARBONS IN NORTH AND SOUTH PACIFIC
    LAMONTAGNE, RA
    SWINNERTON, JW
    LINNENBOM, VJ
    TELLUS, 1974, 26 (1-2): : 71 - 77
  • [25] Membrane separation of gaseous C1-C4 alkanes
    Yu. Grinevich
    L. Starannikova
    Yu. Yampol’skii
    M. Gringol’ts
    E. Finkel’shtein
    Petroleum Chemistry, 2011, 51 : 585 - 594
  • [26] CHROMATOGRAPHIC RETENTION INDEXES OF C1-C4 NITROPARAFFINS
    BONEVA, S
    DIMOV, N
    JOURNAL OF ANALYTICAL CHEMISTRY OF THE USSR, 1979, 34 (06): : 902 - 905
  • [27] Heterogeneous Mechanism of C1-C4 on a Platinum Catalyst
    Xiong Peng-Fei
    Zhong Bei-Jing
    Yang Fan
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (09) : 2200 - 2208
  • [28] ALKOXYLATION OF AEROSIL SILICA WITH C1-C4 ALCOHOLS
    KITAHARA, S
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1976, 49 (12) : 3389 - 3393
  • [29] HYDROCARBONS C1-C4 UNDER HYDROTHERMAL CONDITIONS
    TARAN, IA
    DOKLADY AKADEMII NAUK SSSR, 1984, 274 (05): : 1193 - 1196
  • [30] Membrane Separation of Gaseous C1-C4 Alkanes
    Grinevich, Yu.
    Starannikova, L.
    Yampol'skii, Yu.
    Gringol'ts, M.
    Finkel'shtein, E.
    PETROLEUM CHEMISTRY, 2011, 51 (08) : 585 - 594