The role of semicentral idempotents in triangular matrix rings

被引:0
|
作者
Vladeva, D. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Algebra & Log, Sofia, Bulgaria
关键词
Idempotents; matrix rings; triangular matrices; PRODUCTS;
D O I
10.1080/00927872.2024.2398629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The circle composition e1 degrees e2=e1+e2-e1e2 is well-known from the seminal book of Jacobson. A part of our motivation aims to find non-orthogonal idempotents e1 and e2 such that e1 degrees e2 is an idempotent. Such idempotents are the products rl where r is a right semicentral and l is a left semicentral idempotent of the ring of upper triangular matrices over a ring. We prove that in the semigroup of upper triangular matrices over ring with only trivial idempotents every idempotent matrix can be represented as a circle composition of products of the type rl.
引用
收藏
页码:1024 / 1038
页数:15
相关论文
共 50 条
  • [1] Idempotents in triangular matrix rings
    Hou, Xin
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02): : 296 - 304
  • [2] SEMICENTRAL IDEMPOTENTS IN A RING
    Han, Juncheol
    Lee, Yang
    Park, Sangwon
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 463 - 472
  • [3] A note on semicentral idempotents
    Lomp, Christian
    Matczuk, Jerzy
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) : 2735 - 2737
  • [4] Algebras Generated by Semicentral Idempotents
    Gary F. Birkenmeier
    Henry E. Heatherly
    Jin Yong Kim
    Jae Keol Park
    Acta Mathematica Hungarica, 2002, 95 : 101 - 114
  • [5] Algebras generated by semicentral idempotents
    Birkenmeier, GF
    Heatherly, H
    Kim, JY
    Park, JK
    ACTA MATHEMATICA HUNGARICA, 2002, 95 (1-2) : 101 - 114
  • [6] Idempotent Triangular Matrices over Additively Idempotent Semirings: Decompositions into Products of Semicentral Idempotents
    Vladeva, Dimitrinka
    AXIOMS, 2025, 14 (02)
  • [7] IDEMPOTENTS IN MATRIX-RINGS
    BARNETT, C
    CAMILLO, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (04) : 965 - 969
  • [8] STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS
    Huang, Juan
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1321 - 1334
  • [9] IDEMPOTENTS IN MATRIX GROUP-RINGS
    CHADHA, GK
    PASSI, IBS
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 94 (03) : 283 - 284
  • [10] IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS
    Balmaceda, Jose Maria P.
    Datu, Joanne Pauline P.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 1 - 12