Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction

被引:1
|
作者
Fajemisin, Jesutofunmi Ayo [1 ,2 ]
Gonzalez, Glebys [2 ]
Rosenberg, Stephen A. [2 ,3 ]
Ullah, Ghanim [1 ]
Redler, Gage [3 ]
Latifi, Kujtim [3 ]
Moros, Eduardo G. [1 ,2 ,3 ]
El Naqa, Issam [1 ,2 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Machine Learning Dept, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Radiat Oncol Dept, Tampa, FL 33612 USA
关键词
MRI; MRI-Linac; radiomics; clinical outcomes; machine learning; MRI;
D O I
10.3390/tomography10090107
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of tumors and normal tissues. This development has significantly impacted the imaging and treatment of cancers. Radiomics is the process of extracting high-dimensional features from medical images. Several studies have shown that these extracted features may be used to build machine-learning models for the prediction of treatment outcomes of cancer patients. Various feature selection techniques and machine models interrogate the relevant radiomics features for predicting cancer treatment outcomes. This study aims to provide an overview of MRI radiomics features used in predicting clinical treatment outcomes with machine learning techniques. The review includes examples from different disease sites. It will also discuss the impact of magnetic field strength, sample size, and other characteristics on outcome prediction performance.
引用
收藏
页码:1439 / 1454
页数:16
相关论文
共 50 条
  • [41] Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Brainstem Pathologies
    Patel, Purvee D.
    Ashraf, Omar
    Danish, Shabbar F.
    WORLD NEUROSURGERY, 2022, 161 : E80 - E89
  • [42] Patient-Reported Tolerance of Magnetic Resonance-Guided Radiation Therapy
    Sayan, Mutlay
    Serbez, Ilkay
    Teymur, Bilgehan
    Gur, Gokhan
    Zoto Mustafayev, Teuta
    Gungor, Gorkem
    Atalar, Banu
    Ozyar, Enis
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [43] Radiomics Models Based on Magnetic Resonance Imaging for Prediction of the Response to Bortezomib-Based Therapy in Patients with Multiple Myeloma
    Li, Yang
    Yin, Ping
    Liu, Yang
    Hao, Chuanxi
    Chen, Lei
    Sun, Chao
    Wang, Sicong
    Hong, Nan
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [44] Magnetic Resonance-Guided Adaptive Radiation Therapy for Prostate Cancer: The First Results from the MOMENTUM study-An International Registry for the Evidence-Based Introduction of Magnetic Resonance-Guided Adaptive Radiation Therapy
    Teunissen, Frederik R.
    Willigenburg, Thomas
    Tree, Alison C.
    Hall, William A.
    Choi, Seungtaek L.
    Choudhury, Ananya
    Christodouleas, John P.
    de Boer, Johannes C. J.
    Breugel, Eline N. de Groot-van
    Kerkmeijer, Linda G. W.
    Pos, Floris J.
    Schytte, Tine
    Vesprini, Danny
    Verkooijen, Helena M.
    van Zyp, Jochem R. N. van der Voort
    PRACTICAL RADIATION ONCOLOGY, 2023, 13 (03) : E261 - E269
  • [45] Delta radiomics analysis of Magnetic Resonance guided radiotherapy imaging data can enable treatment response prediction in pancreatic cancer
    Tomaszewski, M. R.
    Latifi, K.
    Boyer, E.
    Palm, R. F.
    El Naqa, I.
    Moros, E. G.
    Hoffe, S. E.
    Rosenberg, S. A.
    Frakes, J. M.
    Gillies, R. J.
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [46] Delta radiomics analysis of Magnetic Resonance guided radiotherapy imaging data can enable treatment response prediction in pancreatic cancer
    M. R. Tomaszewski
    K. Latifi
    E. Boyer
    R. F. Palm
    I. El Naqa
    E. G. Moros
    S. E. Hoffe
    S. A. Rosenberg
    J. M. Frakes
    R. J. Gillies
    Radiation Oncology, 16
  • [47] Reducing the Toxicity of Radiotherapy for Pancreatic Cancer With Magnetic Resonance-guided Radiotherapy
    Tchelebi, Leila T.
    Zaorsky, Nicholas G.
    Rosenberg, Jennifer C.
    Sharma, Navesh K.
    Tuanquin, Leonard C.
    Mackley, Heath B.
    Ellis, Rodney J.
    TOXICOLOGICAL SCIENCES, 2020, 175 (01) : 19 - 23
  • [48] Multiparametric magnetic resonance-guided and monitored microwave ablation in liver cancer
    Zhang, Kai
    Liu, Ming
    Xu, Yujun
    He, Xiangmeng
    Sequeiros, Roberto Blanco
    Li, Chengli
    JOURNAL OF CANCER RESEARCH AND THERAPEUTICS, 2020, 16 (07) : 1625 - 1633
  • [49] Prediction of Individual Response to Electroconvulsive Therapy via Machine Learning on Structural Magnetic Resonance Imaging Data
    Redlich, Ronny
    Opel, Nils
    Grotegerd, Dominik
    Dohm, Katharina
    Zaremba, Dario
    Buerger, Christian
    Muenker, Sandra
    Muehlmann, Lisa
    Wahl, Patricia
    Heindel, Walter
    Arolt, Volker
    Alferink, Judith
    Zwanzger, Peter
    Zavorotnyy, Maxim
    Kugel, Harald
    Dannlowski, Udo
    JAMA PSYCHIATRY, 2016, 73 (06) : 557 - 564
  • [50] Series of High Magnetic Resonance-Guided Photoinduced Nanodelivery Systems for Precisely Improving the Efficiency of Cancer Therapy
    Liu, Chenyu
    Yao, Weihe
    Zhou, Hengjun
    Chen, Hailiang
    Yu, Simiao
    Qiao, Weihong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (18) : 20616 - 20627